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ABSTRACT

Many studies of human language processing have shown that readers slow down at less
frequent or less predictable words, but there is debate about whether frequency and
predictability effects reflect separable cognitive phenomena: are cognitive operations
that retrieve words from the mental lexicon based on sensory cues distinct from those that
predict upcoming words based on context? Previous evidence for a frequency-predictability
dissociation is mostly based on small samples (both for estimating predictability and frequency
and for testing their effects on human behavior), artificial materials (e.g., isolated constructed
sentences), and implausible modeling assumptions (discrete-time dynamics, linearity,
additivity, constant variance, and invariance over time), which raises the question: do
frequency and predictability dissociate in ordinary language comprehension, such as story
reading? This study leverages recent progress in open data and computational modeling to
address this question at scale. A large collection of naturalistic reading data (six datasets,
>2.2 M datapoints) is analyzed using nonlinear continuous-time regression, and frequency
and predictability are estimated using statistical language models trained on more data than is
currently typical in psycholinguistics. Despite the use of naturalistic data, strong predictability
estimates, and flexible regression models, results converge with earlier experimental studies in
supporting dissociable and additive frequency and predictability effects.

INTRODUCTION

Consider the words beer and cauldron in the following sentences:

• She purchased a beer/cauldron.
• She stirred the boiling beer/cauldron.

Intuitively, the boldfaced word in each example seems more difficult to process, for reasons
that likely have to do with the statistical properties of language: some words are used more
frequently than others, and some words are more predictable in a specific context than others.
In a less constraining context like She purchased a, the less frequent word cauldron incurs a
processing cost relative to the more frequent word beer. However, a more constraining context
like She stirred the boiling can reverse this pattern, since cauldron becomes more predictable
than beer. These impressions have been borne out empirically by many studies that showed
longer reading times for words that are less frequent (Goodkind & Bicknell, 2021; Juhasz &
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Rayner, 2006; Just & Carpenter, 1980; Miellet et al., 2007; Rayner, 1977; Rayner & Duffy,
1986; Rayner & Raney, 1996, Schilling et al., 1998; White et al., 2018) or less predictable
(Ehrlich & Rayner, 1981; Kretzschmar et al., 2015; Miellet et al., 2007; Staub, 2011; Wilcox
et al., 2020, 2023; Shain et al., in press; Zola, 1984).

While these effects may seem unsurprising, they are bound up in fundamental questions
about the real-time mental processes by which we infer meaning from language. One proce-
dural view of language comprehension focuses on putatively distinct cognitive operations. The
goal of theorizing in this view is to understand the moment-by-moment coordination of these
operations in assembling a representation of meaning: words must be recognized from visual
or auditory input, retrieved from long-term memory, and integrated into a partial representa-
tion of sentence structure (Coltheart et al., 2001; Engbert et al., 2002; Gibson, 2000; Harm &
Seidenberg, 2004; Just & Carpenter, 1980; Lewis & Vasishth, 2005; Morrison, 1984; Nilsson &
Nivre, 2010; Reichle et al., 1998; Staub, 2015; Van Dyke & McElree, 2011). Another inferential
view of language comprehension focuses on the problem of optimally allocating probability
among possible message-level meanings given limited evidence (i.e., incomplete utterances;
Bicknell & Levy, 2012; Futrell et al., 2020; Gibson et al., 2013; Hahn et al., 2022; Hale,
2001; Levy, 2008, see also Legge et al., 1997; Norris, 2006 for related perspectives on word
recognition). The goal of theorizing in this view is to understand the structure and parameter-
ization of the mental probability model that licenses these inferences.

These two views prioritize different aspects of the comprehension problem (respectively,
how representations are computed vs. which representations to compute) and are thus in
many ways incommensurable and possibly complementary: any implemented comprehension
system must both compute meaning representations (the focus of the procedural view) and
contend with uncertainty (the focus of the inferential view). A major goal of cognitive psychol-
ogy is in fact to figure out how both these objectives are achieved. However, the two views
tend to differ in substance with respect to their commitments about processing difficulty; in
particular, whether processing difficulty is thought to be driven primarily by operations that
recognize words and integrate them into sentence representations in working memory (proce-
dural view) or primarily by the informativity of a word in context, irrespective of how that
information is represented in working memory (inferential view). This difference can lead to
divergent interpretations of the aforementioned relationship between word frequency and
predictability.

Under a procedural view, frequency effects are generally thought to arise from differential
encoding strength of words in the mental lexicon: more frequently encountered words will
have stronger memory representations (often conceived as higher baseline activation or lower
activation thresholds) and thus be easier to retrieve based on sensory (e.g., visual word form)
cues (Coltheart et al., 2001; Engbert et al., 2002; Just & Carpenter, 1980; Morrison, 1984;
Nilsson & Nivre, 2010; Reichle et al., 1998). This construal of frequency effects as reflecting
memory retrieval (as opposed to e.g., lower-level perceptual processes like visual word rec-
ognition) is motivated by their relatively long timecourse: frequency effects have been shown
to extend into “late” eye movement measures like go-past duration (e.g., Slattery et al., 2007,
this study) and “spill over” into the processing of subsequent words (e.g., Rayner & Duffy,
1986, this study), suggesting that word frequency continues to influence processing even when
the word is no longer in the fovea. Such delayed effects seem unlikely to be driven primarily
by visual word recognition, although visual processing may of course contribute to them at
early stages. Prediction is thought to serve a distinct role in processing by preactivating words
based on context, thereby facilitating their integration into the meaning representation
(Brothers & Kuperberg, 2021; Ehrlich & Rayner, 1981; Staub, 2015). Although some
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procedural models implement predictability effects as a multiplier on frequency-based
retrieval processes and thus predict a frequency-predictability interaction (e.g., Reichle
et al., 1998), little empirical evidence of such an interaction has emerged (see below). For
these and other reasons, recent statements of the procedural view tend to construe frequency
and predictability effects as reflecting independent types or stages of processing (e.g., Staub,
2015).

Under an inferential view, the core determinant of processing difficulty is how much the
probability distribution over possible interpretations must change in response to observing a
word (Hale, 2001; Levy, 2008). Using information theory, this change can be quantified as
surprisal, the negative log probability of a word in context (Levy, 2008). On this view, fre-
quency effects are merely a species of predictability effect that arises when context is absent
or unconstraining, causing the processor to fall back to the prior probability of the word (a
function of lexical frequency; Bicknell & Levy, 2012; Levy, 2008; Norris, 2006). Returning
to the example above, because cauldron is less frequent than beer, it is also less predictable
in an unconstraining context like She purchased a. Thus, the inferential view construes pre-
dictability as the root cause of apparent frequency effects, and frequency effects should not
emerge when predictability is taken into account.

The frequency-related and predictability-related components of these two views can treated
separately. For example, an inferential view of predictability effects (whereby processing cost
is driven by the size of the update to the interpretation distribution) is logically compatible with
a procedural view of frequency effects (whereby processing cost is additionally driven by the
difficulty of lexical retrieval). Indeed, because considerable prior evidence favors an inferential
(Bayesian) rather than a procedural (preactivation-based) interpretation of predictability effects
in language comprehension (e.g., Shain et al., in press; Smith & Levy, 2013; Szewczyk &
Federmeier, 2022; Wilcox et al., 2020, cf. Brothers & Kuperberg, 2021) an inferential view
of predictability effects is assumed in the present study. As a result, unless otherwise noted,
the terms procedural and inferential are used throughout this work to refer specifically to
the implications of these views for frequency effects, setting aside their implications for pre-
dictability effects, which have been studied elsewhere (see Discussion for elaboration on this
point). Thus, the key question at issue in this study is which view (procedural or inferential)
better predicts the relationship between frequency and predictability specifically: are
frequency and predictability effects dissociable (as predicted by the procedural view), or does
predictability explain frequency effects away (as predicted by the inferential view)? This
question has been addressed in three ways.

The first line of research uses a factorial frequency-predictability manipulation in which
sentence frames that provide neutral (LoPred) or constraining (HiPred) cues are crossed with
target words from low (LoFreq) and high (HiFreq) frequency bins (Altarriba et al., 1996; Ashby
et al., 2005; Bélanger & Rayner, 2013; Gollan et al., 2011; Hand et al., 2010; Kretzschmar
et al., 2015; Lavigne et al., 2000; Miellet et al., 2007; Rayner et al., 2001, 2004, see Staub,
2015, for review). In this design, both views predict an increase in reading speed from the
LoPred-LoFreq condition to the HiPred-LoFreq condition due to the increase in predictability.
Perhaps surprisingly, both views also predict an increase in reading speed from the LoPred-
LoFreq condition to the LoPred-HiFreq condition. The procedural view predicts this because
frequency is thought to be a prediction-independent driver of processing difficulty. But the
inferential view also predicts this because the LoPred condition does not in fact match items
on predictability: high-frequency words are also more predictable in neutral contexts, such
that the difference from LoPred-LoFreq to LoPred-HiFreq is really a matter of predictability
(rather than frequency). The relative difficulty of matching LoPred vs. HiPred items on
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predictability in the inferential view (vs. the procedural view) falls out from differences in the
assumed role played by prediction (facilitation vs. cost), and thus in the assumed relationship
between predictability and processing difficulty (linear vs. logarithmic; Smith & Levy, 2013;
Shain et al., in press, see Discussion). Nonetheless, the two views differ regarding the HiPred-
HiFreq condition. Unlike the procedural view, the inferential view predicts no difference in
reading time between the HiPred-HiFreq and HiPred-LoFreq conditions, since, in both cases,
context has rendered the word highly predictable, regardless of its base frequency. Thus, in this
design, the inferential view predicts a frequency-predictability interaction that attenuates the fre-
quency effect for highly predictable words, whereas the procedural view predicts additive effects
with no interaction (Kretzschmar et al., 2015; Staub, 2015). Thus far, most such studies find no
significant interaction, which has been taken to support the procedural view (Staub, 2015),
although some significant frequency-predictability interactions have been reported in eye move-
ments (Hand et al., 2010) and event-related potentials (ERPs; Dambacher et al., 2006; Sereno
et al., 2020). See Discussion for elaboration on this point.

However, there are reasons to treat this evidence with caution. First, it is based on null
findings (non-significance of interactions) in studies with generally small samples (typically,
20–40 participants with 8–10 items per condition). Second, it derives from isolated sentence
reading in which the rich contexts and communicative goals that characterize ordinary lan-
guage use (and may aid prediction) are absent (Hamilton & Huth, 2020; Hasson et al., 2018;
Hasson & Honey, 2012; Jain et al., 2023). Third, by binning on predictability, it collapses con-
tinuous differences in predictability that can be large on the logarithmic surprisal scale which
is predicted by the inferential view and supported by empirical studies (Hoover et al., 2023;
Shain et al., in press; Smith & Levy, 2013; Wilcox et al., 2020, 2023). This mismatch could be
detrimental to effects (including interactions) estimated by linear models. Fourth, statistical
inferences are generally based on analyses of variance (ANOVAs), which cannot simulta-
neously account for random variation due to the particular sample of participants and items
in a study (Barr et al., 2013; Clark, 1973).

The second line of research uses the same basic design as above but looks for differences in
how frequency and predictability affect the parameters of the exGaussian distribution (Staub,
2011; Staub et al., 2010). The exGaussian is the convolution of a normal distribution (with
location μ and dispersion σ parameters) with an exponential distribution, thereby introducing
a rightward skewness parameter (τ). This property makes the exGaussian a popular choice for
modeling reaction times, which often have heavy right tails (Balota & Yap, 2011; Heathcote
et al., 1991; Hohle, 1965; Ratcliff, 1979). Staub et al. (2010) found that frequency generally
modulates both location and skewness, whereas Staub (2011) found predictability to only
modulate location (see also Sheridan & Reingold, 2012). Staub (2011) reasoned that frequency
and predictability effects derive from distinct mechanisms, since they have distinct distribu-
tional effects.

The concerns about this second line of evidence overlap substantially with the concerns
about the first (small sample sizes, artificial tasks, and analyses that do not jointly account
for participant and item effects). In addition, a difference in significance does not entail a sig-
nificant difference (Nieuwenhuis et al., 2011). Since the effects of predictability and frequency
on skewness have not been directly compared within a single study, it may be premature to
conclude a difference.

The third line of research attempts to address some of these concerns by applying more
expressive mixed-effects models to word-by-word naturalistic reading (e.g., of stories or news-
paper articles) using statistically derived frequency and predictability estimates (Goodkind &
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Bicknell, 2021; Shain, 2019). This approach improves ecological validity as well as the reso-
lution of the predictability estimate (since controlled studies tend to use low-precision cloze
predictability estimates), at the expense of experimental control. Under this design, the empir-
ical predictions of the two views at issue here are straightforward: the procedural view predicts
separable frequency and predictability effects, whereas the inferential view predicts that pre-
dictability (represented as surprisal) will explain away any frequency effects. Results have been
mixed. Goodkind and Bicknell (2021) analyzed the Dundee eye-tracking dataset (Kennedy &
Pynte, 2005) using linear mixed-effects models (LMEMs; Bates et al., 2015) and found evi-
dence from likelihood ratio tests (LRTs; Wilks, 1938) of unigram (log-frequency) effects that
were not explained by n-gram models of word predictability. However, Shain (2019) analyzed
the Dundee, Natural Stories (Futrell et al., 2021), and UCL (Frank et al., 2013) datasets using
continuous-time deconvolutional regression (CDR) models (Shain & Schuler, 2021) and found
that frequency effects did not improve models’ generalization to unseen data, over and above
predictability. There is thus an apparent discrepancy between the results of the controlled stud-
ies outlined above and at least one replication attempt (Shain, 2019) in a more naturalistic
design, which raises concerns about potential task or modeling artifacts.

However, because naturalistic studies rely on large, complex observational datasets, results
are highly sensitive to statistical design. LMEMs make a number of simplifying assumptions,
including discrete-time dynamics, linear and additive effects, homoscedasticity (constant
error), and stationarity (time-invariance). These assumptions are cognitively implausible and
can critically affect the outcome of statistical tests (Shain & Schuler, in press). The CDR models
of Shain (2019) relax the assumption of discrete-time dynamics but leave the remaining
assumptions intact. To the extent that these assumptions are violated by the data-generating
process, this may affect results in unpredictable ways (Shain & Schuler, in press). Moreover,
both extant naturalistic studies used n-gram predictability models with highly constrained (1–4
word) contexts that likely under-represent the amount of contextual information available to
humans.

In summary, despite a sizeable body of prior work, questions remain about the dissociabil-
ity of frequency and predictability effects in reading (especially in naturalistic settings), and
thus about their implications for the cognitive architecture of human language comprehension.
The present study therefore leverages recent progress in computational modeling and open
data to revisit this question in naturalistic reading at scale. The core methodological contribu-
tions are as follows.

First, unlike prior work, predictability is estimated using GPT-2, an incremental neural net-
work language model (Radford et al., 2019) based on the transformer architecture (Vaswani
et al., 2017). GPT-2 has been shown to strongly correlate with human measures of language
processing, both in behavior (Hoover et al., 2023; Shain et al., in press; Wilcox et al., 2020)
and the brain ( Jain et al., 2023; Schrimpf et al., 2021; Shain et al., 2022; Tuckute et al., 2024).
In fact, one recent study showed that GPT-2 surprisal significantly outperformed cloze surprisal
in predicting eye movements in the Provo eye-tracking dataset (Shain et al., in press). This
result converges with recent evidence (Hofmann et al., 2022; Michaelov et al., 2023) suggest-
ing that large-scale statistical language models may be at or beyond parity with cloze (Taylor,
1953), the established gold-standard measure of human subjective predictability in
psycholinguistics.

Second, analyses cover the largest collection of naturalistic reading data brought to bear on
this question to-date, consisting of six datasets representing three reading modalities (eye-
tracking during reading, self-paced reading, and the Maze task), with a combined total of over
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2.2 million reading events. All statistical tests are based on the generalization performance of
pre-trained statistical models to unseen data, thus grounding results directly in the generaliz-
ability of findings.

Third, analyses use the continuous-time deconvolutional regressive neural network
(CDRNN), an interpretable approach to analyzing observational time series that generalizes
continuous-time deconvolutional regression (Shain & Schuler, 2018, 2021) using artificial neu-
ral networks (Shain & Schuler, 2021, in press). These continuous-time deconvolutional models
have been used in other recent studies of language processing effects in human reading behav-
ior (Shain, 2019; Shain et al., in press) and brain activity (Shain et al., 2020, 2022). CDRNNs
simultaneously relax all the problematic simplifying assumptions enumerated above (discrete-
time dynamics, linearity, additivity, homoscedasticity, and stationarity) and dramatically
improve fit to human reading data over standard approaches (Shain & Schuler, in press). In
addition to reducing reliance on implausible modeling assumptions, CDRNNs offer an addi-
tional key advantage for this research question: they simultaneously estimate how variables
influence all parameters of the predictive distribution (i.e., the location, dispersion, and skew-
ness parameters of the exGaussian) in a fully mixed-effects design, and they can therefore be
used to revisit prior claims of dissociable effects of frequency and predictability on the shape of
the distribution over reading times.

To anticipate the main finding, CDRNN models show strong and dissociable effects of fre-
quency and predictability across datasets, with little evidence of an interaction. However,
results do not support previous claims of dissociable distributional effects. On the whole, both
frequency and predictability primarily modulate the skewness parameter of the distribution
over reading times, with weaker effects on the location and scale parameters. Thus, although
frequency and predictability dissociate in their effects on overall reading times, they affect the
distribution over reading times in qualitatively similar ways.

Together with prior work (especially Shain et al., in press), these results cross-cut the com-
mon dividing lines between the procedural and inferential communities in sentence process-
ing research and thus encourage both theoretical positions to revisit core assumptions. The
results of the present study indicate that frequency effects have a life of their own, even under
rigorous control for predictability as estimated by transformer language models, the current
state of the art for modeling predictability effects in human reading (Shain et al., in press). This
study thus aligns with the procedural view, according to which prediction and retrieval are
separable processes, and presents a major challenge for the inferential view, which, under
standard assumptions, affords no explanation for prediction-independent frequency effects.
But recent naturalistic work on a similar scale to the present study also provides strong evi-
dence that small absolute differences in low predictability yield large differences in processing
difficulty (Shain et al., in press, cf. Brothers & Kuperberg, 2021). This outcome is difficult to
account for under the standard procedural assumption that prediction is primarily a facilitatory
preacivation-based process: if a word is unpredictable, it should get little facilitation, regard-
less of whether it had probability 0.01 or 0.001. However, this outcome falls out naturally from
the inferential view, which regards predictability as reflecting the (logarithmically-scaled)
update to the processor state after observing a word. Thus, both views face challenges in rec-
onciling key assumptions with attested empirical patterns.

On the inferential side, one relevant recent innovation is the development of resource-
rational variants of the inferential view that also predict a frequency-predictability dissociation,
but for different reasons (Futrell et al., 2020; Hahn et al., 2022). Resource-rational inferential
models hypothesize that humans have imperfect or “lossy” access to the linguistic context due
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to both perceptual and memory limitations, with a probability of forgetting that increases
roughly in proportion to the length of context. This view predicts that standard language
models like GPT-2, which have veridical access to arbitrarily long contexts, over-estimate con-
textual influences on word prediction relative to humans. Since more recently encountered
words are less likely to have been forgotten than less recently encountered words, humans
are expected interpolate (or smooth) predictions based on longer contexts (about which they
are less certain) with predictions based on shorter contexts (about which they are more
certain). As a consequence, frequency should dissociate from predictability by indirectly
capturing the effects of this forgetting-based smoothing over context representations. Thus,
frequency effects that are not explained by predictability can still be construed as a species
of predictability effect (rather than a reflex of lexical retrieval) as long as the predictability
estimate has implausibly direct access to context. This view is nonetheless dissociable from
the procedural view because it frames frequency and (GPT-2) predictability as points along
a continuum of contextual forgetting, rather than as reflexes of distinct cognitive operations.
Thus, the resource-rational view predicts additional contributions from other points along this
continuum (e.g., bigram and trigram context models), whereas the procedural view does not.
Results in the present study provide some support for this prediction, and thus favor a resource-
rational interpretation of the frequency-predictability dissociation, in line with other recent evi-
dence (Goodkind & Bicknell, 2021).

METHODS

Dataset selection, preprocessing, and modeling closely follow Shain et al. (in press). Details
are provided below for reference. Data used in these analyses are available for download at
https://osf.io/8v5qb/, and code to reproduce the analyses is available at https://github.com
/coryshain/cdr.

Data

Analyses cover six publicly available naturalistic reading datasets: the Brown self-paced read-
ing (SPR) dataset (Smith & Levy, 2013), the Dundee eye-tracking (ET) dataset (Kennedy &
Pynte, 2005), the GECO self-paced reading dataset (English version; Cop et al., 2017), the
Natural Stories self-paced reading dataset (Futrell et al., 2021), the Natural Stories Maze dataset
(Boyce & Levy, 2023), and the Provo eye-tracking dataset (Luke & Christianson, 2018). Per
Shain and Schuler (2021), to enable valid deconvolution, all data filtering and partitioning
described below are applied only to the response vectors (the modeled reading times). The
entire predictor matrix (sequence of word fixation features) is retained in all models.

In a self-paced reading task, participants are presented with texts in which words or char-
acters are occluded until the participant reveals them one-by-one in left-to-right order by
pressing a button. In a Maze task (Freedman & Forster, 1985), like in a self-paced reading task,
participants press buttons to progress word-by-word through a text. However, at each word
position in the text, participants are presented with a forced choice between the true next word
and a distractor, and they are tasked with selecting the correct continuation. In an eye-tracking
during reading task, texts are presented on a screen to participants while their eye movements
are recorded, and their sequence of fixations to words in the text are computed.

The self-paced reading and Maze tasks yield a single word-by-word response variable:
reading time (or reaction time, RT), that is, the time elapsed between stimulus presentation
(a word in self-paced reading or a forced-choice decision in Maze) and pressing a button to
indicate a decision (to reveal the next word in self-paced reading or to choose the continuation
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in Maze). Modeling eye movements during free reading is more challenging because the eyes
do not progress linearly through the textual sequence of words. Studies of eye-tracking during
reading have used a variety of measures derived from the reading record, each with a some-
what different cognitive interpretation (see e.g., Rayner, 1998, for review). This study considers
three different measures of fixation duration:

• Scan path duration. Time elapsed between entering a word region (from either direc-
tion) and entering a different word region (in either direction).

• First path duration. Time elapsed between entering a word region from the left and
entering a different word region (in either direction).

• Go-past duration. Time elapsed between entering a word region from the left and
entering a word region to its right (including all intervening regressive fixations).

Scan path and first pass durations are both early measures, restricted to the fixation duration
of a single word (Rayner, 1998). They differ only in whether regressive eye movements are
included (scan path) or discarded (first pass). Go-past duration is a late measure designed to
capture all processing (including regressive eye movements) involved in moving beyond the
current “frontier” in progressing through the text.

In all eye tracking datasets except the GECO dataset (see below), a stimulus “event” is con-
sidered to be any fixation to a word region in the text. Thus, the full sequence of fixations
before entering a target word region, regressive or non-regressive, is used to predict all three
types of fixation duration at that region. Note that this differs from standard regression analyses
of first-pass and go-past durations in eye-tracking data, which typically discard the full
sequence of fixations and only consider the linear sequence of words. The ability to recruit
the full scan path record to predict all response variables is an advantage of the deconvolu-
tional regression approach described below.

In all datasets, following prior analyses of the Dundee and Natural Stories SPR datasets
(Shain & Schuler, 2021), the data are partitioned into training, validation, and test splits
(approximately 50%, 25%, and 25%, respectively) using modular arithmetic on a split variable
i, defined as a function of participant index p and sentence index s:

i ¼ s þ pð Þ mod 4 (1)

where datapoints are cycled into training if i 2 {0, 1}, validation if i = 2, and test if i = 3. Models
are only fitted to data from the training set. Validation data is used for tuning and early stop-
ping, following Shain and Schuler (2022). Test data is only used for statistical comparisons
between fitted models.

Brown SPR. The Brown SPR dataset (Smith & Levy, 2013) contains self-paced reading data
from 35 participants reading short (292–902 word) passages from the Brown dataset
of American English (Francis & Kucera, 1979). The data can be accessed online at
https://github.com/wilcoxeg/neural-networks-read-times. Disclosure: these dataset descrip-
tions are identical to those used in Shain et al. (in press, PNAS), which used the same data
and preprocessing.

The dataset contains a total of 450 sentences, 7,188 words, and 136,907 responses.
Following established protocol for Natural Stories SPR (another self-paced reading dataset,
described below), responses are removed if they fall at sentence boundaries or if their RTs were
less than 100 ms or greater than 3,000 ms.
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Dundee ET. The Dundee ET dataset (Kennedy & Pynte, 2005) contains eye-tracking data from
10 participants who read newspaper articles from The Independent on a computer monitor.
The data can be accessed online at https://github.com/wilcoxeg/neural-networks-read-times.

The dataset contains a total of 2,388 sentences, 51,501 words, and 408,439 distinct fixa-
tions to word regions on the screen. The responses in the Dundee dataset are filtered to
exclude fixations following large outlier saccades (>20 words in either direction), based on
the assumption that such outliers reflect track loss or inattention, rather than language process-
ing. Following prior work (e.g., Shain & Schuler, 2021), fixations to words adjacent to a screen,
line, or sentence boundary are removed, as well as fixations interrupted by blinks.

GECO ET. The GECO ET dataset (Cop et al., 2017) contains eye-tracking data from partici-
pants who read The Mysterious Affair at Styles by Agatha Christie on a computer monitor.
The full dataset contains data from 19 Dutch-English bilinguals who read the first half of the
novel in either Dutch or English and the second half in the other language, along with data
from 14 English monolinguals who read the entire novel in English. Because the computa-
tional language models used in this study are English-specific, here we only used the data from
the 14 monolingual English readers. Unlike the other ET datasets analyzed in this study, the
GECO dataset does not provide the full scan path record, but only a distilled format that con-
tains first pass and go-past times by word. Thus, in the case of GECO, scan path durations are
not analyzed, and each fixated word in textual order is treated as a stimulus “event” (rather
than individual fixations) for the purposes of deconvolution. The data can be accessed online
at https://expsy.ugent.be/downloads/geco/.

The portion of the dataset analyzed here contains a total of 5,300 sentences, 56,440 words,
and 374,179 events. Following the Dundee protocol (above), the responses in the GECO
dataset are filtered to exclude fixations following large outlier saccades (>20 words in either
direction) and fixations to sentence boundaries (screen and line boundaries were not
annotated).

Natural Stories SPR. The Natural Stories SPR dataset (Futrell et al., 2021) contains crowd-
sourced self-paced reading responses from 178 participants to 10 naturally-occuring narrative
or non-fiction pieces modified in order to over-represent rare words and syntactic construc-
tions without compromising perceived naturalness. The stimuli are thus designed to reflect the
typical conditions of story comprehension, while subtly taxing the language processing sys-
tem. The data can be accessed online at https://github.com/languageMIT/naturalstories.

The dataset contains a total of 485 sentences, 10,256 words, and 1,013,377 responses.
Following previous work (e.g., Shain & Schuler, 2021), RTs are removed if they are less than
100ms or greater than 3,000ms, if they are to words adjacent to a sentence boundary, if
participants answered less than 5/8 comprehension questions correctly, or if, subject to the
aforementioned constraints, participants have fewer than 100 RTs.

Natural Stories Maze. The Natural Stories Maze dataset (Boyce & Levy, 2023) contains crowd-
sourced Maze task responses from 95 participants to the same materials as in the Natural
Stories SPR dataset above, using a recently developed technique (A-Maze) to generate high
quality forced-choice alternatives for long naturalistic passages (Boyce et al., 2020). The data
can be accessed online at https://github.com/vboyce/amaze-natural-stories.

The dataset contains a total of 97,527 responses (the textual statistics are the same as
Natural Stories SPR above). Following Boyce and Levy (2023), RTs are removed if they are less
than 100 ms or greater than 5,000 ms, if they are to words adjacent to a sentence boundary, or
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if the subject responded incorrectly (i.e., selected the wrong continuation). Inattentive subjects
(defined as subjects with lower than 80% accuracy) are also removed.

Provo ET. The Provo ET dataset (Luke & Christianson, 2018) contains eye-tracking data from
84 participants who read 55 short (39–62 word) passages from various online sources on a
computer monitor. The data can be accessed online at https://osf.io/sjefs/.

The dataset contains a total of 134 sentences, 2,745 words, and 213,224 distinct fixations
to word regions on the screen. Following the Dundee protocol (above), responses are filtered to
exclude fixations following large outlier saccades (>20 words in either direction), fixations to
words adjacent to a sentence boundary (screen and line boundaries were not annotated), and
fixations interrupted by blinks.

Critical Predictors

Broad-coverage estimates of words’ predictability in context across the naturalistic stimuli con-
sidered here are computed using the default GPT-2(-small) model (Radford et al., 2019) pro-
vided by the HuggingFace library (Wolf et al., 2020). GPT-2 is a 175 M parameter deep neural
network language model that computes a nonlinear transformation of long contexts (up to
1024 preceding words) using the Transformer architecture (Vaswani et al., 2017) to generate
a probability distribution over the next word. GPT-2 has been shown to correlate strongly with
human measures of language processing, both behavioral (Wilcox et al., 2020) and neural
(Schrimpf et al., 2021), and GPT-2 surprisal outperforms cloze estimates as a predictor of
human reading latencies (Shain et al., in press). Based on strong prior evidence that predict-
ability effects in reading are at least logarithmic (Hoover et al., 2023; Shain et al., in press;
Smith & Levy, 2013; Wilcox et al., 2020, in press; though cf. Brothers & Kuperberg, 2021),
predictability is represented on a surprisal (negative log probability) scale. GPT-2 sometimes
breaks words into subtokens, but word-level surprisals are recovered by applying the chain
rule (i.e., summing subtoken surprisals within the word). GPT-2-small is chosen over larger
variants of GPT-2 (e.g., GPT-2-XL) or larger variants of later GPT models (e.g., GPT-3; Brown
et al., 2020) based on evidence that GPT-2-small provides substantially better fit to reading
times than these other models (Kuribayashi et al., 2023; Oh et al., 2021; Shain et al., in press).
In particular, although numerous more advanced language models have been released since
GPT-2-small, these models are ubiquitously instruction-tuned (e.g., by reinforcement learning
with human feedback) in order to improve their alignment with the preferences of human chat-
bot users. Instruction tuning may therefore compromise the interpretation of language models
as models of next-word predictability, and recent evidence suggests that it frequently degrades
the alignment between surprisal and human reading times (Kuribayashi et al., 2023). Among
models trained strictly as language models (without instruction tuning), the GPT-3-davinci-002
model remains as of this writing the most advanced in the GPT family and among the most per-
formant available, and prior work indicates that it substantially underperforms GPT-2-small as a
model of human reading times (Shain et al., in press). Thus, available psychometric evidence
favors GPT-2-small for modeling human reading behavior (even if larger models perform better
for other measures, such as brain activity, e.g., Antonello et al., 2023; Schrimpf et al.,
2021). Further details about the procedure used to compute surprisal from the GPT-2 model
can be found in Shain et al. (in press).

Although the precise training dataset used by GPT-2 is proprietary, it is known that its train-
ing data is much larger than datasets typically used to estimate word frequency in psycholin-
guistics (e.g., CELEX, estimated from 18 M words; Baayen et al., 1995). To minimize effects of
training size, word frequencies are therefore estimated from OpenWebText (Gokaslan &
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Cohen, 2019), a 6.5 B-word open replication of GPT-2’s WebText training corpus. To facilitate
comparison with surprisal above, frequency effects are represented on a unigram surprisal
scale, that is, the negative log prior probability of the word. This measure is equivalent
(modulo an additive constant) to the negation of the log frequency scale regularly used in psy-
cholinguistics (Baayen & Lieber, 1996; Baayen et al., 2016; Balota & Chumbley, 1984; Carrol,
1967; Demberg & Keller, 2008; Norris, 2006; Rumelhart & Siple, 1974). Unigram surprisals
are estimated using KenLM (Heafield et al., 2013) with default hyperparameters.

In addition to the critical predictability and frequency predictors above, all models contain
a number of control predictors, described in SI A.1. All models include full by-participant ran-
dom intercepts, slopes, and neural network parameters, as well as random intercepts by token
position in each text.

Analysis

Continuous-Time Deconvolutional Regression. All analyses use continuous-time deconvolutional
regressive neural networks (CDRNNs; Shain, 2021; Shain & Schuler, in press). In brief,
CDRNNs use artificial neural networks to estimate a nonlinear function relating a stimulus
event (i.e., a fixated word with its attendant features) to its effect on the parameters of the pre-
dictive distribution over the response (here, the location, dispersion, and skewness parameters
of the exGaussian distribution) at some continuous delay. Unlike standard approaches to time
series regression like linear mixed-effects models (LMEMs; Bates et al., 2015) and generalized
additive models (GAMs; Wood, 2006), CDRNNs simultaneously relax assumptions that the IRF
is discrete-time, linear, stationary (time-invariant), and heteroscedastic (constant error), all of
which are implausible in the context of naturalistic reading (Shain & Schuler, in press). Full
description of the CDRNN approach can be found in Shain and Schuler (in press). CDRNN
implementation details used in this study are described in SI A.

Statistical Procedure. Statistical testing within this continuous-time deconvolutional framework
relies on out-of-sample model comparison: models instantiating the null vs. alternative hypoth-
eses are trained on a portion of the data (training set), and conditional likelihoods from these
models on an unseen portion of the data (test set) are statistically compared in order to deter-
mine whether the model instantiating the alternative hypothesis generalizes better than the
model instantiating the null hypothesis (Shain & Schuler, 2021). All tests aggregate over
ensembles of 10 models, which reduces variability due to stochastic optimization. Following
Shain et al. (in press), ensembles are compared using paired permutation tests of out-of-sample
conditional likelihood. Full details of the testing protocol are described in SI A.

In this study, the main model is a CDRNN in which all frequency, predictability, and control
predictors are permitted to interact and to influence all parameters of the exGaussian predic-
tive distribution. This model is used for all visualizations. Null models testing individual effects
or interactions are constructed as follows.

To test overall frequency or predictability effects, null variants of the main model were fitted
with frequency and/or predictability ablated. To test an overall frequency-predictability inter-
action, a null model is constructed containing two distinct neural networks, one convolving
unigram surprisal and all control predictors, and another convolving GPT-2 surprisal and all
control predictors. This design allows unigram surprisal and GPT-2 surprisal to interact with
control variables, but not with each other. To ensure a matched architecture for fair compar-
ison, the alternative model also contains two (redundant) neural networks, with each network
convolving all predictors. To test effects of frequency or predictability on specific distributional
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parameters, models are constructed containing three distinct neural networks, one for each of
the three distributional parameters (location, dispersion, and skewness). Null models involve
an ablation of a predictor from one of these networks, and alternative models include all pre-
dictors in all networks. For example, to test unigram effects on skewness, unigram surprisal is
removed from the neural network that generates the skewness parameter, holding everything
else constant. For additional details and justification, see SI A.2.

RESULTS

The key CDRNN model estimates are shown in Figure 1 as plots representing the expected
influence of frequency and predictability on mean reading latency in milliseconds (ms).
Because CDRNN models simultaneously estimate a nonlinear multivariate response to all pre-
dictors over time, visualizations show average case estimates of the instantaneous effects (i.e.,

Figure 1. Estimated effects of frequency (Unigram surprisal) and predictability (GPT-2 surprisal) on mean word-by-word reading time across
datasets. Plots show how the instantaneous response (i.e., at no delay) deviates from its mean as a function of one predictor (x axis) at three
different values (line colors) of the other predictor (mean, ±1 standard deviation), thus revealing how the frequency effect changes as a function
of predictability (and vice versa). Dotted lines show 95% variational Bayesian credible intervals. Plots showing effects that make a significant
unique contribution to generalization likelihood are marked with *. In all datasets, effects of frequency are similar across the range of predict-
ability values and vice versa, supporting a lack of interaction (i.e., the two predictors modulate reading times mostly independently; interac-
tions are not significant overall or in any but 1/11 comparisons, see Tables S2–S6). The individual parameters of the exGaussian distribution
show a similar pattern (SI H). More detailed visualizations of these effects over time are given in Figures S1–S4, and visualizations that also
include the control predictors are given in Figure S6.
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at no delay) of predictor values on the response, holding all other model inputs at their
expected values (for details, see SI B). Detailed visualizations of the estimated response over
time for both the mean response and all parameters of the exGaussian distribution are pro-
vided in SI C and D. The CDRNN models generalize well across datasets (SI E), and similar
effects appear in model-free visualizations (SI F). Detailed results of all statistical tests in each
dataset, as well as aggregate tests across all datasets, are given in SI G.

Are Frequency and Predictability Effects Dissociable in Naturalistic Reading?

As shown in Figure 1, CDRNN models find generalized positive effects for both frequency
(unigram surprisal) and predictability (GPT-2 surprisal) on reading time. These effects contrib-
ute significantly to test set likelihood (in aggregate tests, as well as in all individual compari-
sons for GPT-2 surprisal and in 10/11 individual comparisons for unigram surprisal). Moreover,
these effects are dissociable: unigram surprisal is significant over GPT-2 surprisal alone (both in
aggregate and in 10/11 individual comparisons), and GPT-2 surprisal is significant over
unigram surprisal alone (both in aggregate and in 9/11 comparisons). Thus, neither effect is
reducible to the other, consistent with the procedural view of frequency effects and contrary
to inferential view.

Do Frequency and Predictability Interact?

Results show little evidence that frequency and predictability interact: the estimated effect of
either variable (Unigram or GPT-2 surprisal) in Figure 1 changes little as a function of the other,
supporting an additive relationship. Moreover, the interaction is not significant in aggregate
tests, and is significant in only 1/11 individual comparisons (and the estimated interaction
for the one exception—Provo scan path pass durations—is faint). This result supports additive
contributions of these two effects, consistent with the procedural view of frequency effects and
contrary to the inferential view. Because interactions do not emerge in overall reading times,
interactions in individual distributional parameters (location, dispersion, and skewness) are not
tested (the visual estimates in Figures S10–S12 generally suggest an absence of interactions at
the parameter level as well).

Do Frequency and Predictability Have Differential Effects on the Distribution Over Reading Times?

The distributional findings (isolated effects on location, dispersion, and skewness parameters)
do not support a systematic dissociation in the contributions of frequency (unigram surprisal)
vs. predictability (GPT-2 surprisal) to different distributional parameters. In fact, no single dis-
tributional effect is significant in aggregate tests (Table S6), although effects on the skewness
parameter are significant in the majority of individual comparisons for both unigram surprisal
(6/11 comparisons) and GPT-2 surprisal (7/11 comparisons). The failure of effects on the skew-
ness parameter to reach significance in aggregate tests appears to be largely due to the Natural
Stories SPR dataset, in which modeling frequency and predictability effects on distributional
parameters did not improve generalization likelihood. Thus, although Natural Stories SPR
provides strong evidence of overall effects of frequency and predictability, it appears to be
ambivalent as to their distributional source, with clearer distributional patterns emerging in
other datasets.

By contrast, the location parameter μ and the dispersion parameter σ show little evidence of
generalized modulation by either frequency or predictability. No effect on the location param-
eter is significant in aggregate tests, and effects on location are significant in only a small num-
ber of individual comparisons (1/11 comparisons each for both unigram and GPT-2 surprisal).
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Effects on the dispersion parameter σ are likewise weak (non-significant overall, and significant
in only 1/11 comparisons each for both unigram surprisal GPT-2 surprisal). Supplementary
visualizations of model-estimated frequency and predictability effects on these three distribu-
tional parameters (SI H) converge with this general impression. For both unigram and GPT-2
surprisal, the overall effects appear to be primarily driven by a modulation of the skewness
parameter τ, whose response profile (Figure S12) is similar in shape to that of the overall mean
(Figure 1; note that the mean of the exGaussian distribution is linear in its skewness parame-
ter). By contrast, effects on the location parameter μ (Figure S10) and the dispersion parameter
σ (Figure S11) are generally estimated to be weak, with high uncertainty. Thus the distribu-
tional results support similar contributions to reading latency from both word frequency and
word predictability: both variables primarily drive the skewness (τ) parameter.

Do Frequency and Predictability Effects Differ in Their Timecourses?

Given this evidence for dissociable frequency and predictability effects, one possible recourse
for the inferential view could be to posit delays in the timecourse with which contextual infor-
mation becomes available. In particular, if contextual information becomes available more
slowly than lexical information via sensory cues, then the predictive processor may initially
rely only or primarily on frequency information, and only later revise its expectations as con-
text is taken into account. This account predicts the frequency-predictability dissociation
attested above, but additionally makes the prediction that there should be temporal asymme-
tries: frequency effects should register primarily in earlier measures of processing and peak
relatively quickly (since contextual information comes online to displace the base frequency
in conditioning the probability distribution), whereas predictability effects should register pri-
marily in later measures of processing and peak relatively slowly (since it takes time to bring
context to bear on the inference process).

CDRNN models directly estimate effect timecourses and can therefore be used to address
this question. Visualizations of these timecourse estimates are provided in Figure 2, which
shows little evidence for either of the predictions above. Instead of quickly-peaking frequency
effects and slowly peaking predictability effects, frequency and predictability effects are both
primarily concentrated on the current word and decay at a similar, roughly monotonic rate
lasting about 500 ms–1000 ms depending on the response measure, including in both early
(scan path) and late (go-past) durations in eye-tracking data and in slower self-paced experi-
ments (Natural Stories SPR) in which the measure depends on a manual motor response
(button pressing). Likewise, both frequency and predictability exhibit similar effect timecourses
within a given experiment, with no visual indication that frequency effects have faster dynam-
ics than predictability effects. Instead, frequency and predictability effects arise (and dissoci-
ate) ubiquitously across online measures of comprehension difficulty, with qualitatively similar
dynamics of influence on reading behavior.

Do Frequency Effects Reflect Lexical Access or Lossy Memory for Context?

Although results so far support the frequency-predictability dissocation predicted by the pro-
cedural view, rather than the unity predicted by the inferential view, they are nonetheless con-
sistent with recently-developed resource-rational variants of the inferential view (Futrell et al.,
2020; Hahn et al., 2022), also known as “lossy-context surprisal”, in which past context is also
a latent variable over which the comprehender must perform inference, due to imperfect mem-
ory for preceding input. Thus, according to the resource-rational view, human comprehenders
condition their predictions on an uncertain representation of context, whereas computational
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language models like GPT-2 condition their predictions on a veridical representation of con-
text. This difference could give rise to apparent frequency effects, since frequency information
can serve as a form of error correction on surprisal from veridical language models, which
might over-rely on context relative to humans (Goodkind & Bicknell, 2021).

Although the resource-rational version of the inferential view makes the same empirical
prediction about the frequency-predictability relationship as the procedural view, the two
views diverge in their predictions about the effect of context length. In particular, the
resource-rational view construes frequency and (model-derived) predictability effects as
merely imperfect approximations to the same underlying process (lossy-context surprisal) that
respectively underestimate and overestimate the amount of context available to humans. Thus,
the resource-rational view predicts additional contributions of other predictability measures
along the continuum from no context to full context (e.g., bigram or trigram predictability),
since such measures should incrementally improve the approximation to the true predictability
function. By contrast, the procedural view construes frequency and predictability as reflecting
qualitatively different processes (lexical retrieval and prediction respectively) and therefore
does not predict an additional contribution from e.g., bigram or trigram estimates of predict-
ability. The question then becomes whether predictability estimates derived from intermediate
context lengths improve model fit, as e.g., Goodkind and Bicknell (2021) have argued based
on the Dundee dataset.

Figure 2. Estimated timecourses of frequency and predictability effects on mean word-by-word reading time across datasets. Plots show the
expected change in response (y axis) from observing an increase above the mean of one standard deviation of unigram surprisal (frequency) or
GPT-2 surprisal (predictability) as a function of delay (x axis) from initial fixation, from 0 s (the immediate effect on the current word) to 2 s (the
effect on a word fixated 2 s in the future). The plots thus represent a continuous-time version of the “spillover” effects commonly included in
word-by-word psycholinguistic analyses. More detailed visualizations of effects over time on all three distributional parameters (μ, σ, and τ)
over a continuous range of frequency and predictability values are given in Figures S1–S4.
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To answer this question, KenLM bigram and trigram surprisals are estimated (using the same
procedure as for the unigram surprisal estimates) and added to the CDRNN models for each
dataset. Resulting estimates are plotted in Figure 3. As shown, across datasets, both bigram and
trigram surprisal are systematically associated with numerical increases in reading time even in
the presence of unigram and GPT-2 surprisal estimates. These effects do not significantly
improve model fit for most individual datasets, but the bigram effects emerge as significant
in overall comparisons across datasets. The consistency of positive estimates across datasets
and the significance of bigram effects in overall comparisons are evidence (albeit somewhat
weak given the lack of confirmation in most individual datasets) that bigram models capture
patterns of reading behavior that are not fully captured either by frequency or full-context GPT-
2 predictability. The bigram estimate is also not merely a better predictor than unigram or GPT-
2 surprisal: in aggregate tests, both unigram and GPT-2 surprisal contribute significantly to
model fit over bigram surprisal. Thus, unigram, bigram, and GPT-2 surprisal each contribute
uniquely to generalization likelihood. Although this finding does not contradict the procedural
view’s framing of frequency effects as reflecting lexical retrieval, it is also not a principled pre-
diction of (and therefore not explained by) the procedural view. By contrast, this outcome is a
clear prediction of the resource-rational inferential view, according to which frequency effects
stand at one pole in a continuum of approximation (which also includes bigram effects) to the
effects of lossy memory on human subjective surprisal. Results thus offer some reason to favor

Figure 3. Model estimates across datasets of the expected influence of bigram and trigram surprisal on reading times. Plots show the esti-
mated instantaneous change (i.e., at a delay of 0 s) in the response (with 95% variational credible intervals) as a function of bigram and trigram
surprisal. Estimates of bigram and trigram effects over time are plotted in Figure S5. Plots showing effects that make a significant unique con-
tribution to generalization likelihood are marked with *.
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a resource-rational interpretation of the frequency-predictability dissociation found in this and
other studies, although follow-up work (e.g., implementing lossy-context surprisal as in Hahn
et al., 2022) is needed to evaluate this interpretation more directly.

DISCUSSION

This work revisits a longstanding question about the mental computations involved in human
language comprehension and the degree to which they are sensitive to context: do word
frequency and word predictability exert dissociable effects on reading behavior? Such a
dissociation is predicted by a procedural view of language comprehension which construes
processing as an intricate coordination of distinct cognitive operations, including lexical
retrieval (with difficulty indexed by lexical frequency) and next-word prediction (with difficulty
indexed by predictability). However, an alternative inferential view of language comprehen-
sion construes processing as probabilistic inference over possible meanings given evidence
(strings of words) and predicts that there should be no independent effect of word frequency
once word predictability is taken into account. Prior controlled comparisons between fre-
quency and predictability have generally reported the dissociation predicted by the procedural
view—both on mean reading time (e.g., Altarriba et al., 1996; Ashby et al., 2005; Hand et al.,
2010; Kretzschmar et al., 2015) and on the distribution over reading times (Staub, 2011; Staub
et al., 2010)—and have thus been taken to support lexical retrieval and prediction as distinct
cognitive operations. However, this pattern has yet to be convincingly validated in naturalistic
reading, where mixed results have emerged (Goodkind & Bicknell, 2021; Shain, 2019) using
statistical models with implicit simplifying assumptions that are known to be problematic for
the reading domain (Shain & Schuler, in press).

The contribution of the present study is to improve both the scale and modeling sophisti-
cation of frequency and predictability effects in naturalistic reading. To this end, analyses use
flexible time series analysis (Shain & Schuler, in press) and high-performance frequency
(Gokaslan & Cohen, 2019) and predictability (Radford et al., 2019) estimates to quantify read-
ing patterns from six large-scale publicly available reading datasets, yielding a combined total
of over 2.2 M fixation events collected by diverse research groups. This approach enables (i)
discovery of arbitrarily complex frequency-predictability interactions, (ii) stringent evaluation
based on generalization to unseen data, and (iii) analysis of effects on the full distribution over
reading times, not just their mean. Despite this flexibility and scale, the pattern that emerges is
both simple and strikingly consistent with both prior controlled experiments and the predic-
tions of the procedural view of language comprehension: word frequency and word
predictability strongly dissociate in naturalistic reading and contribute additively to the time
participants take to process words. This result stands in contrast to Shain (2019), who failed to
find a frequency-predictability dissociation in a subset of dataset used in the present study.
However, as acknowledged in Shain (2019), this lack of dissociation was based on a null result
(despite positive frequency estimates, frequency did not statistically improve model fit over
predictability) and did not fully conform to the predictions of the inferential view (in the
Dundee dataset, predictability also failed to improve over frequency, resulting in an ambiguity
as to which effect was primary). The present study improves upon the Shain (2019) approach
in almost every way (more datasets, fewer assumptions, more powerful statistical models,
more thorough evaluations) and should therefore be considered more trustworthy. For detailed
discussion of the relationship between the present study and Shain (2019), see SI I. Results also
clarify the nature of this dissociation: despite prior claims to the contrary (Staub, 2011, 2015;
Staub et al., 2010), the present study provides no evidence that frequency and predictability
differentially affect the parameters of an exGaussian distribution over reading times. Instead,
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both frequency and predictability modulate the distribution in qualitatively similar ways (pri-
marily by modulating the skewness of the distribution, rather than its location or scale). The
frequency-predictability dissociation is furthermore not explained by temporal asymmetries in
the availability of lexical vs. contextual information: frequency and predictability dissociate
across both fast (scan path durations in eye-tracking) and slow (self-paced reading) experimen-
tal modalities, and frequency and predictability show qualitatively similar dynamics of
influence on reading behavior. The existence of frequency effects therefore does not appear
to be explained by delayed access to contextual information.

On one interpretation, these findings support a procedural view of frequency effects as
driven by lexical retrieval operations that are independent of predictive processing. Under this
interpretation, retrieval processes experience difficulty in proportion to the strength of memory
encoding in the mental lexicon, which is assumed to be well approximated by (log) frequency
(Staub, 2015). As stressed in the Introduction, this result does not necessarily favor wholesale
adoption of the procedural view that variation in word-by-word processing demand is driven
primarily by representation-building rather than probabilistic inference. Indeed, considerable
evidence has accumulated that probabilistic inference over sentence interpretations is a major
component of language comprehension and is primarily responsible for effects of predictabil-
ity on processing demand (Hoover et al., 2023; Meister et al., 2021; Shain et al., in press;
Smith & Levy, 2013; Szewczyk & Federmeier, 2022; Wilcox et al., 2020, 2023). The
frequency-predictability dissociation reported this this study may therefore highlight an impor-
tant determinant of processing demand that is not explained by inference over sentence inter-
pretations, but is consistent with distinct processes of memory retrieval. In other words,
although prior evidence favors an inferential (rather than a procedural preactivation-based)
interpretation of predictability effects and thus implicates inference as a key “causal bottle-
neck” on processing demand, the present finding of surprisal-independent frequency effects
could suggest limits on the scope of this bottleneck: frequency (and thus plausibly lexical
retrieval) also plays a large and surprisal-independent role in determining how long partici-
pants spend reading words. Given the remarkable success of surprisal in accounting for a
range of language processing phenomena across diverse experimental measures (Demberg
& Keller, 2008; Frank & Bod, 2011; Frank et al., 2015; Heilbron et al., 2022; Hoover et al.,
2023; Lopopolo et al., 2017; Roark et al., 2009; Shain et al., 2020, in press; Smith & Levy,
2013; van Schijndel & Schuler, 2015; Wilcox et al., 2020), discoveries highlighting the explan-
atory limits of surprisal offer opportunities for new insights into the mechanisms and represen-
tational format of incremental meaning construction during language comprehension (e.g.,
Huang et al., 2023; van Schijndel & Linzen, 2021).

Nonetheless, retrieval difficulty is not the only possible interpretation of dissociable fre-
quency and predictability effects in reading. An alternative interpretation draws on the notion
of resource-rationality to revise the inferential view in such a way that it also predicts the exis-
tence of prediction-independent frequency effects. In particular, under the assumption that
humans predict based on imperfect memory of the context, the resource-rational perspective
predicts that frequency effects will emerge as a form of error correction on predictability esti-
mates (like GPT-2 surprisal) that use veridical context representations (and thus overestimate
the influence of context on human predictions). Note that this prediction holds regardless of
whether predictability is estimated using computational language models (as was done here)
or human cloze experiments (in which participants’ next-word predictions given a context are
repeatedly sampled to construct an empirical distribution; Taylor, 1953), as in most
constructed experiments that have also shown frequency-predictability dissociations (e.g.,
Altarriba et al., 1996; Ashby et al., 2005; Hand et al., 2010; Kretzschmar et al., 2015). This
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is because cloze is typically an offline task in which participants have full access to the written
context when making predictions, thus removing the bottlenecks imposed by lossy memory
during online processing. Under the resource-rational inferential view, it is therefore mis-
guided to search for frequency-predictability dissociations in the first place, since such disso-
ciations are ambiguous between (i) distinct cognitive processes for retrieval and prediction and
(ii) one errorfully-estimated prediction process. Instead, the resource-rational inferential view
motivates a focus on the additional prediction (not made by the procedural view) that inter-
mediate forms of context truncation (e.g., bigram and trigram predictability) will further refine
the approximation of human subjective surprisal and thus contribute to fit to reading times
over frequency and full-context predictability alone. The present study provides tentative sup-
port for this interpretation by showing that bigram and trigram predictability are positively
associated with reading time over and above frequency and GPT-2 predictability, reaching
significance for the case of bigrams in overall comparisons. Nevertheless, to convincingly sub-
stantiate this interpretation, investigation is needed using computational models designed to
directly simulate prediction from lossy memory, which according the resource-rational infer-
ential view should entirely explain both frequency and (full-context) predictability effects (e.g.,
Hahn et al., 2022).

Results also bear on the role of frequency and predictability in shaping the distribution over
reading times. Prior work has established that the exGaussian distribution is a strong descrip-
tive model of reaction times in general (Balota & Yap, 2011; Heathcote et al., 1991; Hohle,
1965; Staub et al., 2010)—and of naturalistic reading specifically (Shain et al., in press)—
relative to the normal distribution. The present study finds the strongest evidence of frequency
and predictability effects on the skewness parameter of the exGuassian distribution, with no
evidence that either frequency or predictability systematically influence either the location or
dispersion of the distribution. In other words, low frequency and low predictability words
increase mean reading time primarily by pushing probability mass into the tail (thus favoring
longer reading times), rather than by shifting the probability distribution toward longer reading
times. There is thus no evidence in the present study for a prior claim that frequency and pre-
dictability dissociate not only with respect to mean reading time but also with respect to which
parameters of the exGaussian distribution they act on (Staub, 2011, 2015; Staub et al., 2010);
instead, frequency and predictability appear to influence the distribution over reading times in
qualitatively similar ways, at least during naturalistic reading. The implications of this result for
cognitive processes are not yet clear given current debates about the theoretical interpretation
of the exGaussian distribution: the classical interpretation of the skewness and location param-
eters as respectively reflecting perceptual and motor processes (Hohle, 1965) is now in ques-
tion (Matzke & Wagenmakers, 2009). Nonetheless, this distributional finding provides a bridge
to the reaction time literature whereby future refinements to our understanding of the cognitive
underpinnings of reaction time distributions may transfer directly to our understanding of
sentence processing.

The present study focuses on frequency and predictability effects on reading behavior, but
there are two related lines of prior research that bear mentioning in this context. First, studies of
lexical decision times (i.e., the time taken for participants to decide whether a stimulus is a real
word in their language) that use single-word prime contexts tend to find frequency-priming
interactions whereby priming effects are larger for low frequency words (Becker, 1979;
Borowsky & Besner, 1993; Forster & Davis, 1984; Norris, 1984). As a contextual effect, prim-
ing is conceptually similar to prediction and under certain assumptions (i.e., prediction as
preactivation-based facilitation, Brothers & Kuperberg, 2021) may operate on the same cog-
nitive mechanisms (lexical activation levels). However, this is not the case under the
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inferential view of predictability effects assumed here (Hale, 2001; Levy, 2008) based on prior
evidence (Hoover et al., 2023; Shain et al., in press; Smith & Levy, 2013; Wilcox et al., 2020,
2023), whereby predictability effects reflect the difficulty of updating inferences over sentence
interpretations. On this view, single-word priming effects in lexical decision are less relevant to
predictability: not only is there no necessary influence of priming on the probability assigned
to sentence interpretations, but there are no sentences to interpret in this task at all. Thus, in
order for priming effects in lexical decision to challenge the key claims of this study, assump-
tions must be made about the mechanisms that underlie predictability effects, and these
assumptions are at odds with a substantial body of evidence. By the same token, the fact that
priming effects arise in non-sentential tasks like lexical decision is difficult for an inferential
account to explain (since, again, there are no sentence interpretations over which to perform
inference). Thus, the present finding of prediction-independent frequency effects in reading
aligns with the priming literature in lexical decision to identify plausible signatures of
activation-based memory processes (frequency, priming) that can be teased apart from infer-
ential processes. The relationship between prediction and priming is thus an important open
question (Metusalem et al., 2012) that may further illuminate the computations that enable
human language comprehension.

Second, studies of word frequency and predictability effects in ERPs during sentence pro-
cessing tend to find frequency-predictability interactions whereby predictability effects are
stronger for low vs. high frequency words (Dambacher et al., 2006; Sereno et al., 2003,
2020; Van Petten & Kutas, 1990), unlike similar studies using eye-tracking (Staub, 2015).
The reasons for this apparent discrepancy between eye-tracking and ERP results are not well
understood and cannot be satisfactorily resolved here. However, as discussed in the Introduc-
tion, under the view advocated here that frequency effects are additive with surprisal scale
predictability effects, empirical predictions about the presence or absence of interactions in
factorial experiments (i.e., experiments that cross high and low predictability with high and
low frequency) are murky. This is because surprisal is much harder to match within low-
predictability vs. high-predictability conditions (due to its logarithmic scaling), potentially giv-
ing rise to differences in the level of confounding between frequency and surprisal between
these two conditions in a given experiment. These differences may in turn vary in degree
between experiments as a function of their design, which could drive variation between exper-
iments as to whether frequency-predictability interactions emerge as significant. Importantly,
the word-by-word regression modeling used in the present study simultaneously sidesteps this
interpretational issue and simplifies the empirical question: do surprisal-independent fre-
quency effects exist in naturalistic reading? Results support an affirmative answer.

In conclusion, although additional work is needed to adjudicate between interpretations of
the frequency-predictability dissociation, one thing is clear from these results: frequency
effects are not explained by surprisal theory in its standard form, even during continuous nat-
uralistic reading. We therefore now have a striking accumulation of evidence for this conclu-
sion from both experimental and naturalistic reading studies (Altarriba et al., 1996; Ashby
et al., 2005; Bélanger & Rayner, 2013; Gollan et al., 2011; Goodkind & Bicknell, 2021; Hand
et al., 2010; Kretzschmar et al., 2015; Lavigne et al., 2000; Miellet et al., 2007; Rayner et al.,
2001, 2004, this work). The frequency-predictability dissociation is thus a multiply-replicated
empirical pattern that should be treated as a key explanandum in theories of language com-
prehension; such signposts are rare in cognitive science and essential for theoretical progress.
The frequency-predictability dissociation also helpfully eliminates an a priori plausible region
of the hypothesis space, namely, that frequency effects are merely a species of predictability
effects under standard assumptions (veridical context) of the inferential view. This hypothesis is
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not tenable in the face of these results, and additional theoretical commitments about the infer-
ential process (e.g., lossy context memory) are needed in order to bring the inferential view
into conformity with the evidence. The findings of this work thus narrow the space of plausible
theories of language comprehension, and suggest clear paths toward further theoretical
refinement.
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