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Incremental language comprehension likely relies on 
general cognitive operations such as retrieval of repre-
sentations from memory, predictive processing, atten-
tional selection, and hierarchical structure building 
(e.g., Gibson, 2000; Tanenhaus et al., 1995). For exam-
ple, in any sentence containing a nonlocal dependency 
between words, the first dependent has to be retrieved 
from memory when the second dependent is encoun-
tered. These kinds of operations are also invoked in 
other domains of perception and cognition, including 
object recognition, numerical and spatial reasoning, 
music perception, social cognition, and task planning 
(e.g., Botvinick, 2007; Dehaene et al., 2003). The appar-
ent similarity of these kinds of mental operations across 
domains has led to arguments that the brain contains 
domain-general circuits that carry out these operations 
and that language draws on these circuits (e.g., Fitch 

& Martins, 2014; Koechlin & Jubault, 2006; Novick et al., 
2005; Patel, 2003; Fig. 1a).

Indeed, a network of frontal and parietal brain 
regions—the multiple-demand (MD) system (also 
known as the executive- or cognitive-control network; 
Fig. 2b)—has been shown to respond during diverse 
cognitive tasks and to be linked to constructs such  
as working memory, inhibition, attention, prediction, 
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Abstract
Understanding language requires applying cognitive operations (e.g., memory retrieval, prediction, structure building) 
that are relevant across many cognitive domains to specialized knowledge structures (e.g., a particular language’s 
lexicon and syntax). Are these computations carried out by domain-general circuits or by circuits that store domain-
specific representations? Recent work has characterized the roles in language comprehension of the language network, 
which is selective for high-level language processing, and the multiple-demand (MD) network, which has been 
implicated in executive functions and linked to fluid intelligence and thus is a prime candidate for implementing 
computations that support information processing across domains. The language network responds robustly to diverse 
aspects of comprehension, but the MD network shows no sensitivity to linguistic variables. We therefore argue that the 
MD network does not play a core role in language comprehension and that past findings suggesting the contrary are 
likely due to methodological artifacts. Although future studies may reveal some aspects of language comprehension 
that require the MD network, evidence to date suggests that those will not be related to core linguistic processes such 
as lexical access or composition. The finding that the circuits that store linguistic knowledge carry out computations 
on those representations aligns with general arguments against the separation of memory and computation in the mind 
and brain.
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structure building, and fluid intelligence (e.g., Duncan 
et al., 2020). These findings make the MD network an 
ideal candidate for carrying out hypothesized domain-
general operations. However, many domains—including 
language—rely on domain-specific knowledge repre-
sentations stored in specialized brain areas and net-
works. For example, language recruits a network of 
frontal and temporal brain regions that respond in a 
highly selective manner during language comprehen-
sion (Fedorenko et al., 2011; Fig. 2a), and damage to 
these regions in adulthood leads to selectively linguistic 
deficits (e.g., Fedorenko & Varley, 2016).

During language comprehension, the MD network 
may work together with the language network, carrying 
out general operations on domain-specific knowledge 
representations. However, it is also possible that the 
language network locally implements general types of 
computations (e.g., retrieval of information from mem-
ory, predictive processing, and structure building; 
Caplan & Waters, 1999; R. L. Lewis, 1996; Martin et al., 
1994). More generally, these kinds of computations, 

although important for various domains, may not draw 
on shared circuits (e.g., Dasgupta & Gershman, 2021; 
Hasson et al., 2015; Fig. 1b), possibly as a way of mini-
mizing wiring lengths (Chklovskii & Koulakov, 2004). 
In this view, the MD network may be a general fallback 
system for domains or tasks for which the brain lacks 
specialized circuitry.

In this article, we review a recent body of work in 
which various aspects of human sentence comprehen-
sion were investigated using functional MRI (fMRI) tech-
niques that reliably distinguish the language network 
from the domain-general MD network (see Fedorenko 
& Blank, 2020, for review), so that their functional 
response properties could be probed independently. 
(This approach is complementary to—but more direct 
than—past work, which has used dual-task paradigms 
and examination of brain-damaged patients to probe 
the role of domain-general resources in language 
comprehension; e.g., Caplan & Waters, 1999;  Martin 
et  al., 1994.) The results have consistently shown (a) 
strong sensitivity in the language network, (b) little 
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Fig. 1.  Schematic illustrations of (a) an architecture in which computations that are used across domains are 
implemented in shared circuits and (b) an architecture in which such general computations are implemented 
locally within each relevant set of domain-specific circuits. The architecture in (a) assumes separation between 
memory circuits (which store domain-specific knowledge representations) and computation circuits (which 
support attention, prediction, structure building, and other operations across domains); in the architecture in 
(b), the circuits that store domain-specific knowledge representations also carry out computations on those 
representations (e.g., Dasgupta & Gershman, 2021; Hasson et al., 2015).
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response in the MD network, and (c) significantly stronger 
responses in the language network than the MD network 
for every investigated component of natural-language 
comprehension, including word predictability, working 
memory retrieval, and generalized measures of language 
comprehension difficulty. Together, these findings sup-
port the existence of a self-sufficient specialized lan-
guage system that carries out the bulk of language-related 
processing demands.

The MD Network Does Not Closely 
Track the Linguistic Signal

Activity in a brain region or network that supports lin-
guistic computations should be modulated by the prop-
erties of the linguistic stimulus. One method for 
estimating the degree of stimulus-linked activity (or 
stimulus tracking), developed by Hasson and colleagues 
(e.g., Hasson et al., 2010), is based on the correlations 
across individuals during the processing of naturalistic 
stimuli. The logic is as follows: If a brain region or net-
work processes features of a stimulus, different individu-
als should show similar patterns of increases and 
decreases in neural response in that region or network 
over time. Note that this method makes no assumptions 
about what features in the stimulus are important, so it 
provides a theory-neutral way to estimate the degree  
of stimulus-linked activity. In three experiments, Blank 
and Fedorenko (2017) investigated synchrony in neural 

response across individuals during naturalistic language 
processing and found strongly stimulus-linked responses 
in the language network, as expected. Critically, how-
ever, the MD network exhibited substantially lower lev-
els of stimulus-linked activity (Fig. 2c). To rule out the 
possibility that the MD network tracks linguistic stimuli 
closely but in a more variable way across individuals than 
the language system does, Blank and Fedorenko also 
examined within-participant correlations to multiple pre-
sentations of the same stimulus. Within-participant correla-
tions in the MD network were lower than within-participant 
correlations in the language network and about as low 
as between-participants correlations in the MD network. 
This result indicates that the MD network’s activity is less 
strongly modulated by changes in the linguistic signal 
than is the activity of the language network.

The MD Network Does Not Show a 
Core Functional Signature of Language 
Processing

Natural-language sentences exhibit rich patterns of syn-
tactic (e.g., Chomsky, 1957) and semantic (e.g., Montague, 
1973) structure that are not present in perceptually 
matched stimuli, such as lists of unconnected words or 
nonwords. Processing syntactic and semantic dependen-
cies is widely thought to impose a computational burden 
(e.g., S. Lewis & Phillips, 2015), and thus an expected 
signature of language processing is an increased neural 

Fig. 2.  Location of the language and multiple-demand (MD) networks and evidence that putatively domain-general cognitive operations 
important for language processing are carried out locally within the language system, rather than the MD network. The brain images 
show the location of the (a) language and (b) MD networks as identified by group-level patterns of activation in response to sentences 
versus nonword lists (Fedorenko et al., 2011) and hard versus easy working memory tasks (Fedorenko et al., 2013), respectively. 
These locations were used to constrain the definition of functional regions of interest in each individual participant in all the studies 
whose results are presented in the graphs (c–g). The graphs summarize recent functional MRI findings showing that the language, but 
not the MD, network responds to diverse aspects of language comprehension. Results are averaged across the regions within each 
network, but the patterns also hold for each region individually. The graph in (c) shows the correlation in neural response across 
participants in each network during naturalistic story comprehension (Blank & Fedorenko, 2017). The correlation was stronger in the 
language network than in the MD network, which suggests that stimulus tracking was stronger in the language network. The graph in 
(d) shows the response of each network during processing of sentences and word lists (Diachek et al., 2020). The average response 
across participants and experiments, indicated by the horizontal lines, revealed that the language network was more strongly engaged 
for sentences than for word lists, but the opposite pattern held in the MD network. (Darker gray bars show results from passive read-
ing and listening experiments, and lighter bars show results from experiments in which language processing was accompanied by a 
secondary task (e.g., a memory probe, comprehension, or sentence judgment task). The graph in (e) shows effects of 5-gram surprisal 
(Shain et al., 2020), syntactic parser-based surprisal (i.e., surprisal derived from a computational model of syntactic structure building; 
Shain et al., 2020), and integration cost (Shain et al., 2021) in each network during naturalistic story comprehension. Integration cost 
was operationalized as in the dependency locality theory (DLT; Gibson, 2000). The language, but not the MD, network was sensitive 
to all three measures. The graph in (f) shows the performance of reading times (a measure of comprehension difficulty) in self-paced 
reading and eye tracking during reading (quantified as the correlation between model predictions and observed responses in out-of-
sample data) as predictors of activity in the two networks (Wehbe et al., 2021). The language, but not the MD, network was robustly 
sensitive to comprehension difficulty. The graph in (g) shows the response of each network during passive reading or listening and 
when language comprehension was accompanied by an additional task (Diachek et  al., 2020). The language network responded 
robustly during language comprehension regardless of the presence or absence of an extraneous task, but the MD network responded 
only in the presence of an extraneous task. Horizontal lines correspond to averages across participants. Error bars indicate ±1 SEM by 
participants in (c), (d), (f), and (g) and ±1 SEM by functional region of interest in (e).
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response to sentences relative to control stimuli that lack 
structure. The language network robustly bears out this 
prediction (e.g., Fedorenko et  al., 2011). In a recent 
large-scale study, Diachek et al. (2020) investigated 
whether the same is true of the MD network. Their sam-
ple consisted of fMRI responses from 481 participants, 
each of whom completed one or more of 30 language-
comprehension experiments varying in linguistic materi-
als. Some experiments included sentences, others 
included lists of unconnected words, and still others 
included both of these stimulus types. Results replicated 
past findings of stronger responses in the language net-
work during the processing of sentences compared with 
word lists, but showed systematically greater MD engage-
ment during the processing of word lists than during the 
processing of sentences, plausibly a reflection of the 
greater difficulty of encoding unstructured stimuli (Fig. 
2d). This pattern is inconsistent with generalized MD 
involvement in sentence comprehension.

The MD Network Does Not Show 
Effects of Word Predictability

Effects of word predictability are robust in behavioral 
(e.g., Ehrlich & Rayner, 1981) and electrophysiological 
(e.g., Kutas & Hillyard, 1984) measures of human lan-
guage processing, and it has been argued that frontal and 
parietal cortical areas—likely within the MD network—
encode expectancies across domains (e.g., Corbetta & 
Shulman, 2002), including language (Strijkers et  al., 
2019). Thus, one possible role for the MD network in 
language processing is to encode incremental predic-
tion error. With our colleagues, we (Shain et al., 2020) 
investigated this possibility by analyzing measures of 
word-by-word surprisal (e.g., Levy, 2008) in fMRI 
responses to naturalistic audio stories.1 We examined 
effects of surprisal estimates based on both word 
sequences (5-gram surprisal models that predict the 
next word on the basis of the preceding four words) 
and syntactic structures (probabilistic context-free 
grammar models that predict the next word on the basis 
of an incomplete syntactic analysis of the unfolding 
sentence). These estimates of surprisal had significant 
(and separable) effects in the language network, but 
neither 5-gram surprisal nor syntactic parser-based sur-
prisal had a significant effect in the MD network (Fig. 
2e, first two sets of bars). Thus, whereas the results 
support the existence of a rich predictive architecture 
that exploits both word co-occurrences and syntactic 
patterns, this architecture appears to rely on a mecha-
nism housed in language-specific cortical circuits, 
rather than on a domain-general predictive coding 
mechanism that may reside in the MD network.

The MD Network Does Not Show 
Effects of Syntactic Integration

Influential theories of human sentence comprehension 
posit a critical role for working memory retrieval in 
integrating words into an incomplete parse of the 
unfolding sentence (e.g., Gibson, 2000). Given that 
working memory is thought to be one of the core func-
tions supported by the MD network (Duncan et  al., 
2020), one plausible role for this network in language 
comprehension is as a working memory resource for 
syntactic structure building. We (Shain et  al., 2021) 
investigated this possibility by exploring the contribu-
tion of multiple theory-derived measures of working 
memory cost to explaining variance in the language 
and MD networks’ responses to naturalistic linguistic 
stimuli. The language network showed a systematic and 
generalizable (to an unseen data portion) response to 
variants of integration cost as proposed by Gibson’s 
(2000) dependency locality theory. Gibson posited that 
constructing syntactic dependencies incurs a retrieval 
cost proportional to the number of intervening ele-
ments that compete referentially with the retrieval tar-
get. This pattern did not hold in the MD network (Fig. 
2e, third set of bars), where activity did not reliably 
increase with measures of integration cost (or other 
types of working memory demand explored in the 
study). Thus, whereas these results support a role for 
working memory retrieval in naturalistic language pro-
cessing, they indicate that the working memory 
resources that support such computations reside in 
language-specific circuits, and that working memory 
resources housed in the MD network play little role.

The MD Network Does Not Show 
Effects of Comprehension Difficulty

The foregoing results challenge the hypothesis that the 
MD network plays a role in two of the core classes of 
computation posited by current theorizing in human 
sentence-processing research: prediction (e.g., Levy, 
2008) and integration (e.g., Gibson, 2000). However,  
it is infeasible to enumerate and test the many other 
possible computations involved in human language 
processing—including those not covered by existing 
theory—in which MD may play a role. In another study 
(Wehbe et  al., 2021), we bypassed this limitation by 
leveraging independent measures of reading times to 
predict fMRI responses to naturalistic stories. Reading 
times are widely regarded in psycholinguistics as reli-
able, theory-neutral proxies for language-comprehension 
difficulty and are commonly used as dependent vari-
ables to test hypotheses about the determinants of 
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comprehension difficulty (Rayner, 1998). Using this 
measure enabled us to test whether comprehension 
difficulty in general registers in the MD network, with-
out precommitting to a particular theory of sentence 
processing. We found that activity in the language, but 
not the MD, network showed a strong effect of com-
prehension difficulty as measured by reading times (Fig. 
2f). Thus, the MD network is unlikely to play a critical 
role in the computations that govern incremental (word-
by-word) language-comprehension difficulty, regardless 
of how this difficulty is explained theoretically.

The MD Network Does Not Respond 
During Comprehension in the Absence 
of Extraneous Task Demands

This lack of evidence for the MD network’s engagement 
during language processing appears to contradict many 
prior reports of activity in what appear to be MD 
regions during language processing (e.g., Novick et al., 
2005). Critically, such results have almost always been 
obtained when word or sentence comprehension has 
been accompanied by an extraneous task, which may 
engage the MD network given its robust sensitivity to 
task demands (Duncan et  al., 2020). Diachek et al. 
(2020) investigated this possibility by contrasting the 
MD network’s engagement in language experiments 
that involved passive comprehension (visual or audi-
tory) with its engagement in experiments that involved 
an additional task, such as responding to memory 
probes, answering comprehension questions, or judg-
ing semantic associations. Whereas the language net-
work was equally engaged in the presence and the 
absence of an additional task, the MD network was 
engaged only in the presence of an additional task (Fig. 
2g). In other words, passive language comprehension 
is sufficient to engage language-selective regions, but 
not MD regions, which suggests that MD engagement 
during language comprehension is primarily induced 
by nonlinguistic task demands (see Discussion).

Discussion

The evidence presented here challenges the hypothesis 
that domain-general executive resources support core 
computations of incremental language processing. The 
MD network (Duncan et al., 2020), where such resources 
are likely housed, does not closely track linguistic stim-
uli; responds more robustly to less language-like materi-
als (e.g., more robustly to lists of unconnected words 
than to sentences); does not show evidence of engage-
ment in predictive linguistic processing, retrieval of pre-
viously encountered linguistic elements from working 

memory, or any other linguistic operation that leads to 
comprehension difficulty during language processing; 
and, unlike the core language network, is not engaged 
by passive comprehension, instead becoming engaged 
only in the presence of a secondary task (e.g., memory 
probe or sentence judgments, Figs. 2c–g). These findings 
greatly constrain the space of plausible language-related 
computations that the MD network might support and 
align with the architecture outlined in Figure 1b. In 
particular, it appears that the network that stores lin-
guistic knowledge representations is also the network 
that performs all the relevant computations on these 
representations in the course of incremental compre-
hension, despite the fact that many of these computa-
tions may be similar to, or the same as, computations 
used in other domains.

Why have prior studies reached different conclusions 
about the reliance of language processing on domain-
general resources? The answer is likely twofold. First, 
for many years, researchers have not clearly differenti-
ated between the language-selective and the domain-
general circuits that cohabit the left frontal lobe but are 
robustly and unambiguously distinct (see Fedorenko & 
Blank, 2020, for dicussion). This failure to separate the 
two networks is due to a combination of (a) traditional 
group-averaging analyses, which blur nearby function-
ally distinct regions, especially in the association cortex, 
where the precise locations of such regions differ across 
individuals (e.g., Frost & Goebel, 2012), and (b) fre-
quent reverse inference from coarse anatomical loca-
tions (i.e., concluding that a cognitive function was 
involved because anatomical brain areas previously 
associated with that function were active; e.g., Poldrack, 
2006). Second, many prior studies have used paradigms 
in which word or sentence comprehension is accom-
panied by a secondary task and/or the linguistic materi-
als used are highly artificial. Such paradigms may 
indeed recruit the MD network, which is robustly sensi-
tive to task demands, but this recruitment does not 
speak to the role of this network in core linguistic 
operations such as lexical access, or syntactic or seman-
tic structure building. For these reasons, we have 
focused our review on studies that (a) relied on well-
validated functional localizers (Fedorenko et al., 2011) 
to identify the language and MD networks within each 
individual brain and (b) used naturalistic comprehen-
sion tasks (Hasson et al., 2018). Such studies converged 
on a clear answer: The domain-general MD network 
does not support core linguistic computations.

The fact that the language system appears to locally 
implement general computations such as memory 
retrieval, prediction, and structure building suggests 
that local computation may systematically accompany 
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functional specialization. This conjecture aligns with 
prior arguments for a tight integration between memory 
and computation at the neuronal level (Dasgupta & 
Gershman, 2021; Hasson et  al., 2015). If a particular 
stimulus (be it a face, spatial layout, high-pitched 
sound, or linguistic input) is encountered with sufficient 
frequency to support specialization in particular cir-
cuits, then it may be advantageous for those circuits to 
carry out as much processing as possible in that domain, 
given that local computation may reduce processing 
latencies that would result from interactive communica-
tion with other systems (Chklovskii & Koulakov, 2004). 
Nevertheless, novel cognitive demands regularly arise, 
and it is infeasible to dedicate cortical “real estate” to 
each of them. A general-purpose cognitive system like 
the MD network is therefore indispensable to robust 
and flexible cognition (Duncan et al., 2020), including 
the critical ability to solve novel problems. Indeed, 
recent computational-modeling work has shown that 
an artificial neural network trained on multiple tasks 
will spontaneously develop functionally specialized 
subnetworks for different tasks; however, if new tasks 
are continually introduced, a subset of the network will 
remain flexible and not show a preference for any 
known task (Yang et al., 2019).

Although the studies summarized here rule out a 
large set of possibilities for the role of the MD network 
in language processing, more work is needed to evalu-
ate the role of this network in language production, in 
more diverse linguistic phenomena (e.g., pragmatic 
inference, including during conversational exchanges), 
and in recovery from damage to the language network 
(e.g., Hartwigsen, 2018). Furthermore, the contributions 
of (possibly domain-general) subcortical and cerebellar 
circuits to language comprehension and cognitive pro-
cessing require additional investigation; future work 
may show overlap between linguistic and nonlinguistic 
functions in such circuits.

Conclusion

Despite the apparent similarity between the mental 
operations required for language comprehension and 
those required by other cognitive domains, the evi-
dence we have reviewed here challenges the hypothesis 
that domain-general executive circuits (housed within 
the MD network) play a core role in language compre-
hension. We conjecture that such circuits similarly do 
not play a core role in other domains that rely on 
domain-specific representations, and that the core con-
tribution of the MD network to human cognition lies 
in supporting flexible behavior and the ability to solve 
new problems.
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