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Continuous-time deconvolutional regression for psycholinguistic modeling 
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A B S T R A C T   

The influence of stimuli in psycholinguistic experiments diffuses across time because the human response to language is not instantaneous. The linear models 
typically used to analyze psycholinguistic data are unable to account for this phenomenon due to strong temporal independence assumptions, while existing 
deconvolutional methods for estimating diffuse temporal structure model time discretely and therefore cannot be directly applied to natural language stimuli where 
events (words) have variable duration. In light of evidence that continuous-time deconvolutional regression (CDR) can address these issues (Shain & Schuler, 2018), 
this article motivates the use of CDR for many experimental settings, exposits some of its mathematical properties, and empirically evaluates the influence of various 
experimental confounds (noise, multicollinearity, and impulse response misspecification), hyperparameter settings, and response types (behavioral and fMRI). 
Results show that CDR (1) yields highly consistent estimates across a variety of hyperparameter configurations, (2) faithfully recovers the data-generating model on 
synthetic data, even under adverse training conditions, and (3) outperforms widely-used statistical approaches when applied to naturalistic reading and fMRI data. In 
addition, procedures for testing scientific hypotheses using CDR are defined and demonstrated, and empirically-motivated best-practices for CDR modeling are 
proposed. Results support the use of CDR for analyzing psycholinguistic time series, especially in a naturalistic experimental paradigm.   

1. Introduction 

Psycholinguistic models are evaluated by regressing their predictions 
against data from human subjects, but the human response to linguistic 
input is not strictly instantaneous; it takes time for the brain to recognize 
and respond to language. Consequently, measures of human cognition 
that are often used to test psycholinguistic hypotheses, including reac-
tion times and neuronal activity, may capture the lingering influence of 
multiple preceding stimulus events, a phenomenon we will refer to as 
temporal diffusion. This article argues that temporal diffusion can be 
problematic for analyzing psycholinguistic data using standard tools, 
presents evidence that a continuous-time deconvolutional regression 
(CDR) technique proposed by Shain and Schuler (2018) can address 
these problems, and evaluates the robustness of CDR to various adverse 
training conditions that are likely to arise in the course of scientific 
modeling.1 Results indicate that CDR is a useful technique for identi-
fying and controlling for temporal diffusion in arbitrary time series. 

Temporal diffusion has been carefully studied in some psychological 

subfields. For example, a sizeable literature on fMRI has investigated the 
structure of the hemodynamic response function (HRF), which is known to 
govern the relatively slow response of blood oxygenation to neuronal 
activity (Boynton, Engel, Glover, & Heeger, 1996; Friston, Josephs, 
Rees, & Turner, 1998; Glover, 1999; Lindquist, Loh, Atlas, & Wager, 
2009; Lindquist & Wager, 2007; Ward, 2006). The HRF is an instanti-
ation of the more general notion of impulse response function (IRF) from 
the field of signal processing (Madisetti, 1997), where the response h * g 
of a dynamical system as a function of time is described as a convolution 
over time of an impulse h with an IRF g as shown in Eq. (1), where τ is 
bound by the integral operation and ranges over the time interval [0, t], 
and h(τ) is the impulse at time τ:2 

(h*g)(t) =
∫ t

0
h(τ)g(t − τ)dτ (1) 

The process of deconvolution seeks to infer the structure of g (the IRF) 
given that the impulses h (stimuli) and responses h * g (experimental 
measures) are known. 

* Corresponding author. 
E-mail addresses: shain.3@osu.edu (C. Shain), schuler.77@osu.edu (W. Schuler).   

1 Shain and Schuler (2018) used the term deconvolutional time series regression (DTSR) to refer to what we are calling continuous-time deconvolutional regression. We 
have altered the name in order to stress the contribution of the approach (its continuous-time structure), since discrete-time deconvolutional regression models like 
finite impulse response models and vector autoregression have existed for some time.  

2 Throughout this paper, vectors and matrices are notated in bold lowercase and uppercase, respectively (e.g. u, U). Objects with indexed names are designated 
using subscripts (e.g. vr). Vector and matrix indexing operations are notated using subscript square brackets, and slice operations are notated using * (e.g. X[*,k] 
denotes the kth column of matrix X). Hadamard (pointwise) products are notated using ⊙. The notations 0 and 1 designate conformable column vectors of 0’s and 1’s, 
respectively. 
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This article describes and evaluates a technique for continuous-time 
deconvolutional regression (CDR), which recasts the sequences of stimuli 
(predictors) and responses as convolutionally-related signals whose 
temporal relationship is mediated by one or more continuous-time IRFs 
with shape estimated from data (Shain & Schuler, 2018). By convolving 
predictors with their estimated IRFs, as in Eq. (1), the model can con-
dition its predictions on the entire history of stimuli encountered up to a 
given point in an experiment, rather than e.g. on the properties of the 
current word alone. And by estimating the shape of the IRF from data, 
the model can reveal fine-grained patterns of temporal structure that are 
otherwise difficult to obtain. 

Established techniques for IRF identification, including finite impulse 
response (FIR, also known as distributed lag, or DL) models (Griliches, 
1967; Koyck, 1954; Neuvo, Dong, & Mitra, 1984; Robinson, 1975; Sar-
amaeki, Mitra, & Kaiser, 1993; Sims, 1971) and vector autoregressive 
(VAR) models (Sims, 1980), implicitly assume that the time series is 
sampled at a fixed frequency. This assumption is often ill-suited to 
language research because words in natural language have variable 
duration, whether spoken or read. The number of parameters in discrete- 
time deconvolutional models is also linear (or super-linear) on the 
length of the history window, which can easily lead to over-
parameterization. These objections equally apply to the common tech-
nique in psycholinguistics of injecting “spillover” regressors into linear 
models (i.e. adding coefficients for predictors associated with preceding 
events, e.g. Erlich & Rayner, 1983; Mitchell, 1984), which turns out to 
be FIR/DL by a different name (§3). 

By contrast, CDR defines IRFs as parametric functions of continuous 
time and applies the same continuous IRF to all events in the history, 
yielding a model that can be applied to non-uniform time series (such as 
language) without distorting the temporal or featural structure of the 
stimulus sequence, with constant parametric complexity on the length of 
the history window. The continuous-time nature of CDR also allows the 
estimated response to be queried at any timepoint without reliance on 
post-hoc techniques for interpolation or extrapolation. 

A visual comparison of CDR and FIR models is given in Fig. 1. An 
ordinary least-squares model (Fig. 1a) considers the response to be in-
dependent of all preceding stimulus events:3 

y ∼ N
(
Xb, σ2) (2) 

FIR models relax this independence assumption at the expense of 
model complexity by including additional weights for a fixed number of 
preceding events (Fig. 1b).4 Note that FIR assumes that events are 
equidistant in time, or, equivalently, that variation in temporal spacing 
is inconsequential (an assumption implicitly made by spillover models 
in psycholinguistics). By contrast, CDR retains real-valued timestamps of 

Fig. 1. Visual comparison of time series models. In linear models (a), the response (y-axis) is independent of previous events, while in FIR models (b), previous 
events are assumed to be equidistant in time (x-axis). In CDR models (c and d), the response is a weighted sum of all previous events, with weights provided by the 
IRF as a function of continuous time. Because the IRF is continuous, the response can be queried at any point, permitting direct application to both synchronous (c) 
and asynchronous (d) stimulus and response measures. 

3 y is the response vector, X is the design matrix of predictors, b is the vector 
of coefficients, and σ2 is the variance of the error distribution.  

4 FIR is a special case of the linear model given in eq. 2, with a structured 
design matrix X containing O values for each predictor representing a history of 
O timesteps into the past (see §3). 
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the stimulus events and fits continuous IRFs that govern the influence of 
each predictor on the response as a function of time (Fig. 1c and d). 
Unlike linear models, CDR is agnostic as to whether the stimuli and 
responses are measured at the same time (Fig. 1c) or at different times 
(Fig. 1d), a useful property for applications like fMRI modeling in which 
stimuli have variable duration but responses are measured at a fixed 
frequency (see §8 for discussion). 

Shain and Schuler (2018) provide a formulation and cursory evalua-
tion of CDR for human reading. This article builds on that foundation by 
empirically evaluating the influence of factors such as noise, multi-
collinearity, IRF misspecification, and hyperparameter selection on the 
final estimates, and additionally applies CDR for hemodynamic response 
discovery from fMRI data. The latter application is an appealing use case 
for continuous-time deconvolution because of the asynchrony between 
stimuli (words) and responses (brain scans) in naturalistic fMRI studies of 
language (§8). 

The structure of this article is as follows. It first motivates the use of 
deconvolutional modeling (§2) and the use of CDR over available 
deconvolutional alternatives (§3) within the context of psycholinguis-
tics. It also exposits some of CDR’s mathematical properties (§4), de-
scribes a documented open-source Python implementation (§5), 
evaluates the model on synthetic data implementing a variety of plau-
sible degeneracies (§6), explores the impact of various hyperparameter 
settings on estimates of reading (§7) and fMRI (§8) data, evaluates 
procedures for scientific hypothesis testing in a CDR framework (§9), 
and proposes empirically-motivated best practices for future CDR ap-
plications (§10). Results reveal successful identification of ground truth 
models in synthetic evaluations and plausible, fine-grained estimates of 
temporal structure in psycholinguistic evaluations that are highly 
consistent across a variety of hyperparameters, with improved gener-
alization quality across domains compared to widely-used statistical 
approaches. 

2. The importance of effect timecourses in psycholinguistics 

Pyscholinguists have long recognized that the “critical region” for 
observing an effect may lag behind the stimulus that triggers it because 
of latency in human perception and information processing (Bouma & 
De Voogd, 1974; Erlich & Rayner, 1983; Mitchell, 1984; Morton, 1964; 
Rayner, 1977; Rayner, 1998; Smith & Levy, 2013; Vasishth & Lewis, 
2006). Indeed, theoretical importance has been attached to questions of 
language processing timecourses, such as whether or not the human 
language comprehension architecture contains a buffer allowing infor-
mation processing to lag behind perception (Bouma & De Voogd, 1974; 
Ehrlich & Rayner, 1981; Just & Carpenter, 1980; Mollica & Piantadosi, 
2017). For this reason, statistical analyses of psycholinguistic data often 
include “spillover” regressors to preceding stimuli, whether in the 
context of ordinary least squares (OLS) models (Grodner & Gibson, 
2005), linear mixed-effects (LME) models (Demberg & Keller, 2008), or 
generalized additive (GAM) models (Smith & Levy, 2013).5 

While the psycholinguistic community is aware of the possibility of 
temporal diffusion and has directly investigated it in many studies, there 
may in general be insufficient concern over the severity of the potential 
consequences of temporal diffusion for statistical analysis of human- 
generated time series. For example, while many studies in psycholin-
guistics (such as those cited above) include spillover effects in analyses, 
there are also many that do not, even in naturalistic settings where the 

rate of presentation is not controlled and diffusion might be especially 
pronounced (e.g. Boston, Hale, Kliegl, Patil, & Vasishth, 2008; Fossum & 
Levy, 2012; Frank & Bod, 2011; Roark, Bachrach, Cardenas, & Pallier, 
2009; Smith & Levy, 2008; van Schijndel & Schuler, 2015). In general, 
such studies are not directly concerned with effect timecourses, and 
omission of spillover regressors embodies an implicit belief that an in situ 
model with no controls for diffusion is “good enough” to permit dis-
covery of the relevant patterns. However, controlling for temporal 
diffusion is important regardless of whether the central research ques-
tion directly concerns timecourses because failing to do so can lead to 
false negatives (e.g. failing to detect an effect because it occurred later 
than expected) or misattribution of variance due to temporally diffuse 
effects. 

For example, using LME to evaluate the sensitivity of self-paced 
reading in the Natural Stories corpus (Futrell et al., 2021) to theory- 
driven predictors of memory retrieval cost shows significant main ef-
fects of syntactic constituent wrap-up (p= 2.33e-14) and syntactic de-
pendency length (p= 4.87e-10; Shain, van Schijndel, Futrell, Gibson, & 
Schuler, 2016). However, spilling over one control variable (probabi-
listic context-free grammar surprisal) one position (from in situ to 
spillover-1) causes the effects of interest to vanish (p= 0.816 for con-
stituent wrap-up and p= 0.370 for dependency length; Shain & Schuler, 
2018). 

The contrast between these two sets of results comes down to 
different assumptions about timecourse that are both reasonable a priori 
(i.e. whether the locus of surprisal effects should fall on the current word 
or spill over into the following one). For this particular dataset and 
model definition, it turns out that spilling over surprisal produces a 
stronger baseline that ultimately casts doubt on results obtained using a 
baseline inspired by preceding work. Such an outcome can be difficult to 
anticipate in advance. The possibility of such discrepant results based 
solely on assumptions about timecourse should motivate increased 
attention to diffusion of effects in psycholinguistic modeling. 

The importance of controlling for temporal diffusion is of course 
dependent on experimental design. For example, there may be little 
impact from diffusion in a lexical decision task based on words pre-
sented in isolation with long intervals in between, while there is almost 
certainly a large influence of diffusion in fMRI scans of subjects listening 
to running speech. Psycholinguists and cognitive scientists are increas-
ingly using naturalistic experiments in order to improve ecological 
validity and minimize task artifacts from artificially constructed designs 
(Campbell & Tyler, 2018; Demberg & Keller, 2008; Hasson & Honey, 
2012). As suggested by the discussion of Shain et al. (2016) above, 
controlling for temporal diffusion may be of particular importance in 
such a setting, since measurements are taken from subjects carrying out 
rapid incremental sentence comprehension and multiple word fixations 
may take place within a short span of time (Kolers, 1976; Morton, 1964). 
It is nonetheless possible that even experiments with carefully con-
structed stimuli might benefit from improved control of temporal 
diffusion. For example, even holding prefixes of linguistic stimuli fixed 
up to a critical region cannot entirely control the influence of temporal 
diffusion; the same prefix can be fixated differently in different pre-
sentations, both within and across subjects, potentially leading to vari-
ation in patterns of diffuse processing that may affect the response in the 
critical region. 

This concern about temporal diffusion in psycholinguistic data 
complements recent psycholinguistic interest in other kinds of temporal 
confounds, especially auto-correlation and non-stationarity (Baayen, 
van Rij, de Cat, & Wood, 2018; Baayen, Vasishth, Kliegl, & Bates, 
2017).6Baayen et al. (2018) demonstrate the utility of including a first- 
order auto-regressive term in a GAM model to control for auto- 
correlated error, while Baayen et al. (2017) relax the assumption of 

5 GAM models (Hastie & Tibshirani, 1986) relax the linearity requirement of 
linear models, allowing the predictors to be related to the response via arbitrary 
smooth functions. A GAM with a Gaussian linking function has the following 
form: 

y ∼ N
(
b0 + f1(x1)+ f2(x2)+…+ fk(xk) , σ2) (3)   6 For related findings at high temporal resolution, see Cho, Brown-Schmidt, 

and Lee (2018). 
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stationarity by augmenting GAM models with an independent variable 
C ∈ [0, 1] representing the proportion of the series completed at the 
current timestep. When a spline is fitted directly to C, the obtained curve 
can be interpreted as an estimate of fluctuation in the base response rate 
over time. And when a spline is fitted to the interaction between C and a 
predictor, the obtained curve can be interpreted as an estimate of fluc-
tuation in the influence of the predictor over time. Baayen et al. (2017) 
show that directly modeling non-stationarity can have important im-
pacts on both effect estimates and significance testing when applied to 
time series generated by human subjects. 

While auto-regressive/non-stationary GAM models can capture 
temporal effects, the crucial point of divergence from this work is that 
they do not capture temporal diffusion. They allow the influence of an 
independent variable to fluctuate with time, but continue to assume 
independence of the response from preceding observations of the pre-
dictor(s). In order to handle temporal diffusion, auto-regressive/non- 
stationary GAM models must still make use of the problematic spill-
over technique discussed above. 

CDR and non-stationary GAM models can therefore be seen to 
address distinct potential confounds in time series data: temporal 
diffusion of effects (CDR) vs. auto-correlation and non-stationarity 
(GAM). All three confounds can be addressed relatively straightfor-
wardly by deploying CDR as a pre-process to GAM fitting, resulting in a 
two step analysis in which the data are first convolved with CDR and 
then analyzed using GAM (see §4.6 for further elaboration on this gen-
eral idea). However, we note in passing that convolutional structure can 
in some cases explain apparent autocorrelation and non-stationarity. For 
example, the plot in Fig. 2 shows a time series of synthetic responses 
generated by convolving i.i.d. normal independent variables with 
gamma-shaped convolution kernels, as described in §6. The overall base 
response rate in Fig. 2 appears to fluctuate with time. This is supported 
by the undulating GAM spline (shown in blue), suggesting non- 
stationarity. Responses are also clearly auto-correlated, as shown by 
the higher frequency oscillations evident in the plot. However, the data 
were in fact generated by a strictly stationary convolutional process and 
are i.i.d. normal conditional on the convolution. Apparent 

autocorrelation and non-stationarity are artifactual. Thus, one possible 
source of apparent auto-correlation and non-stationarity in time series 
data may be latent convolutional structure, and, in these cases, diffusion 
is the core temporal confound that must be brought under statistical 
control. 

3. Existing deconvolutional models 

In order to infer the structure of an IRF g in Eq. (1) from data, it is first 
necessary to construct a solution space over which to perform inference. 
One way of doing so is through discrete-time deconvolution, a class of 
methods which recast deconvolution as a special case of linear regres-
sion by discretizing time into a finite number of equidistant steps and 
then estimating timestep-specific parameters. Continuous-time IRFs can 
be inferred from these discrete estimates if desired using various post- 
hoc smoothing techniques. One example of this general approach, 
known as finite impulse response (FIR) models in the signal processing 
literature (Neuvo et al., 1984; Saramaeki et al., 1993) and distributed lag 
(DL) models in the time series literature (Griliches, 1967; Koyck, 1954), 
consists of including regressors from previous timesteps. For simplicity, 
we will henceforth refer to such models as FIR. A fixed-effects FIR model 
of order O with K predictors is a linear model of y ∈ ℝN with design 
matrix X ∈ ℝN×K and parameters b ∈ ℝ1+O⋅K, i.e. an intercept, plus one 
coefficient for each of K predictors for each of O timesteps into the past: 

yFIRO
∼ N

([

1N X 01×K

X[1⋯N− 1,*]

…
…

0(O− 1)×K

X[1⋯N− O+1,*]

]

b , σ2
)

(4) 

The sequence of O coefficients for a given predictor defines a 
discrete-time IRF, and the linear combination of predictors with b de-
fines a temporal convolution operation (i.e. a weighted sum along the 
time dimension). 

Another prominent example of discrete time deconvolutional ap-
proaches is vector autoregressive (VAR) modeling (Sims, 1980). VAR 
generalizes FIR to predict the next timepoint (row) of X rather than a 
distinguished response y. VAR thus estimates parameters B ∈ ℝ(1+O⋅K)×K, 
and generates predictions Y ∈ ℝN×K through linear transformation: 

Fig. 2. Synthetic responses produced by convolving i.i.d. normal independent variables with stationary convolution kernels. Note the undulating GAM smooth in 
blue, suggesting non-stationarity that is not in fact present in the underlying generative process. 

C. Shain and W. Schuler                                                                                                                                                                                                                      



Cognition 215 (2021) 104735

5

YVARO ∼ N

([

1N 01×K

X[1⋯N− 1,*]

…
…

0O×K

X[1⋯N− O,*]

]

B , σ2
)

(5) 

Thus, unlike FIR, which predicts a distinguished response variable 
via convolution of the history of predictor values, VAR predicts all K 
variables at the current timestep through summed linear trans-
formations of the O preceding timesteps. VAR fits can be used to extract 
IRFs between any pair of variables in the model. Both of these tech-
niques are widely used in the fMRI literature (Friston et al., 1994; 
Harrison, Penny, & Friston, 2003), and both can be augmented with 
random effects (Beckmann, Jenkinson, & Smith, 2003; Gorrostieta, 
Ombao, Bédard, & Sanes, 2012). Since VAR estimates IRFs between all 
pairs of variables in the data, it is perhaps unnecessarily powerful for 
typical psycholinguistic studies that seek to model a distinguished 
response variable. We therefore focus on FIR for the remainder of our 
discussion of discrete-time deconvolution. 

As discussed in §1, in psycholinguistics, temporal diffusion is often 
addressed by adding “spillover” predictors encoding predictor values 
from preceding events. From Eq. (4) above, it follows that this approach 
reduces to FIR modeling: a linear model containing O spillover positions 
of K predictors is an FIR model of order O on those K predictors, and the 
set of O coefficients for each predictor defines a discrete-time IRF. In 
practice, the term FIR tends to be used in signal processing settings 
where the temporal distance between samples is fixed, while the term 
spillover tends to be used in experimental settings where the temporal 
distance between samples is ignored. While this distinction matters for 
the interpretation of the discovered IRFs, since discrete-time IRFs only 
have a clock-time interpretation when the offset between timesteps is 
fixed and known, it is immaterial for the definition of the statistical 
model itself. Even the GAM models with spillover used in e.g. Smith and 
Levy (2013) can be thought of as a variant of FIR with an IRF kernel 
whose shape depends on the values of the impulses at each timestep. 

Fig. 3. The problem of variably spaced events for discrete-time convolution in a hypothetical univariate FIR model on predictor word length (characters) with step 
duration Δ. Plots show hypothetical IRFs, with predictor values for each word shown in magenta in timelines below each plot. The example sentence is typeset in 
reverse because the impulse response describes the changing influence of words as they recede into the past. An order 5 FIR model cannot be used directly on a 
variably-spaced word sequence because there is no value of Δ that aligns the FIR coefficients with the stimulus events (3a). One solution (3b) is to use a high- 
resolution IRF of order sp, where s is the length of the history window in seconds and p is the inverse of the precision of the temporal measurement. Although this 
model can be directly applied to variably-spaced events, it overparameterized to the point of being unidentifiable. In this hypothetical training example where s = 1 
and p = 100, only 5/100 parameters have data. Another solution is to coerce the data into a format that fits the assumptions of FIR (3c). Temporal variation can be 
deleted by “snapping” words to coefficients in one-to-one alignment under the assumption of a fixed but unknown value for Δ (Spillover). This technique is dis-
tortionary if the stimuli are variably spaced and their underlying contribution is a function of clock time rather than relative event index. Alternatively, the predictor 
can be continuously interpolated between events, and the interpolated signal is resampled at points (vertical dashed lines) that align with the discrete IRF coefficients 
(Interpolation). This technique is distortionary for event-based predictors that are not underlyingly continuous. CDR (3d) avoids both sparsity and distortion by 
replacing the discrete IRF with a parametric continuous function of time (in this example, f(x; β) = e− βx). A continuous IRF can be queried exactly at any point, has a 
parametric complexity that is independent of the temporal span or resolution of the response kernel, can be applied directly and without distortion to variably-spaced 
time series, and is agnostic to temporal alignment between stimuli and response. 
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Because of the identity (in the case of LME) or close relationship (in the 
case of GAM) of spillover models to FIR models, the remainder of this 
article will no longer distinguish the two, since the same objections 
apply regardless of terminological choice. 

Since additional spillover positions contribute additional parame-
ters, rich spillover controls can easily create such heavily parameterized 
models that realistically sized datasets cannot support them, especially 
when used in the context of mixed-effects or spline regressions that fit 
random effects or multi-dimensional smooths for each spillover position 
of each predictor. For example, linear mixed effects models with by- 
subject random slopes fitted using lme4 (Bates, Mächler, Bolker, & 
Walker, 2015) on the Dundee corpus (Kennedy, Pynte, & Hill, 2003) fail 
to converge with two or more spillover regressors.7 These models only 
contained spillover variants of four predictors, and the problem of 
overparameterization can be even more severe in models that contain 
more control variables (e.g. Demberg & Keller, 2008, where LME models 
contained up to thirteen predictors). In addition to concerns about 
overparameterization, spillover regressors can also introduce spurious 
multicollinearity to the extent that predictors are autocorrelated, which 
can be problematic for model identification and interpretation (Kutner, 
Nachtsheim, & Neter, 2003). 

As a consequence, analysts are forced in practice to trade off the 
richness of the timecourse model with other sources of complexity. For 
example, Smith and Levy (2013) use GAM models containing rich 
spillover structures (up to three timesteps) but relatively poor random 
effects (by-subject random intercept), while van Schijndel and Schuler 
(2015) use LME models with rich random effects (by-subject and by- 
word random intercepts along with by-subject random slopes for 
every predictor) but no spillover regressors. 

However, perhaps more fundamental for language research than the 
aforementioned computational problems is the inability of discrete-time 
deconvolutional models to represent variably spaced events. Fig. 3a 
visually exemplifies this problem, and Fig. 3b and c exemplify possible 
solutions to it within a discrete-time framework, each of which has un-
desirable properties. As shown in Fig. 3a, an FIR model assumes a single 
fixed interval Δ between coefficients, and thus the discrete-time IRF 
cannot directly convolve the properties of variably-spaced words because 
no such interval exists. This problem is visualized by the lack of temporal 
alignment between the words in the example and the FIR coefficients, and 
it can be addressed by coercing the model to match the data or the data to 
match the model. To coerce the model to match the data, the interval Δ can 
be reduced to the level of precision of the temporal measurement (e.g. 1 
millisecond) along with a compensatory increase in the number of FIR 
coefficients per unit time (Fig. 3b), ensuring alignment to an FIR coeffi-
cient of all past events within some finite window. As visualized in the 
figure, such an approach exaggerates the problem of over-
parameterization and data sparsity to such a degree that we are unaware of 
any psycholinguistic studies that attempt to use this technique (how many 
events in a psycholinguistic experiment are spaced exactly 142 ms apart?). 
To coerce the data to match the model, the stimuli can be (1) forced into 
one-to-one alignment with the FIR coefficients under the simplifying 
assumption that Δ is fixed but unknown or (2) interpolated and resampled 
at points that align with the FIR coefficients (Fig. 3c). The forced alignment 
approach is equivalent to spillover, and it is distortionary for variably 
spaced events to the extent that the underlying contribution of those 

events is a function of clock time rather than relative event index. The 
interpolation approach has been used e.g. in fMRI modeling (Huth, de 
Heer, Griffiths, Theunissen, & Gallant, 2016), and it is distortionary to the 
extent that the stimuli represent transient events rather than samples from 
a continuously evolving feature space.8 

CDR avoids both problems (overparameterization and distortion) by 
defining the IRF as a continuous-time parametric kernel (Fig. 3d). 
Because a continuous IRF has infinite precision, it can be queried exactly 
at any point, thereby avoiding the trade-off faced by discrete-time 
models between parsimony on the one hand and the temporal span 
and resolution of the response kernel on the other. An additional 
advantage of continuous-time deconvolution is the ability to model 
asynchronously measured data (see §1). Because continuous-time 
deconvolution is parsimonious, faithful to the underlying temporal 
structure in the stimulus, and agnostic to temporal alignment between 
stimulus and response, it is more appropriate than FIR (spillover) ap-
proaches for analyzing many kinds of psycholinguistic data. Despite 
these conceptual advantages, continuous-time deconvolution is not 
currently used in psycholinguistics9 and is little used in cognitive science 
more generally (aside from some previous neuroimaging studies that 
optimize the parameters of gamma-shaped hemodynamic response 
functions, e.g. Kruggel & Yves von Cramon, 1999; Kruggel, Wiggins, 
Herrmann, & von Cramon, 2000; Miezin, Maccotta, Ollinger, Petersen, 
& Buckner, 2000; Lindquist & Wager, 2007; Lindquist et al., 2009). 

In addition to the discrete-time frameworks discussed above, related 
continuous-time regression models have also been proposed. Prior work 
has defined continuous-time extensions of distributed lag models 
(Bergstrom, 1984; Robinson, 1975, 1976; Sims, 1971). However, these 
approaches rely on Fourier analysis of the discretized covariate vector in 
order to model the continuous IRF. Consequently, they impose two 
problematic restrictions: (1) the covariates must be underlyingly 
continuous, and (2) discrete samples from the covariates must be taken 
at a uniform time interval (Robinson, 1975). They are therefore even less 
applicable to non-uniform discrete time series than their discrete-time 
analogs, which do not impose continuity constraints, while also being 
subject to the same critiques of the uniformity requirement. 

Mathematically, the most closely related existing model to CDR is the 
the Hawkes process model, also known as a self-exciting counting pro-
cess model (Hawkes, 1971). Hawkes process models are used to analyze 
stochastic point processes in which the occurrence of an event locally 
increases the instantaneous probability of other events occurring, and 
thus the intensity function of the process is self-exciting in continuous 
time. Formally, a Hawkes process generates the intensity λ(t) given 
(possibly non-stationary) base intensity μ(t) and event times T via 
convolution with the triggering function g(t) (analagous to an IRF): 

λ(t) = μ(t)+
∑

τ∈T,τ<t
g(t − τ) (6) 

Commonly, g is chosen to be the two parameter exponential function 
g(t) = αeβt, α, β > 0, enforcing exponential decay of the self-excitation 
function with amplitude α and decay rate β,10 and the intensity λ(t) is 
taken to be the parameter of a Poisson distribution describing the 
instantaneous concentration of events given the history, or equivalently, 
the rate parameter of an exponential distribution describing the 

7 Models used log go-past durations as the dependent variable and included 
the predictors word length (in characters), saccade length (in words), unigram log 
probability, and 5-gram surprisal, with probabilities computed by KenLM lan-
guage models (Heafield et al., 2013) trained on the Gigaword 3 corpus (Graff & 
Cieri, 2003). Spillover positions from 0 (in situ) to n for each predictor were 
included for six models, one for each of n ∈ {0,1,2,3,4,5}, along with a random 
intercept by word and random slopes by subject for each predictor (and each 
spillover position of each predictor). Outlier filtering was performed following 
van Schijndel and Schuler (2015), yielding a total of 193,309 data points. 

8 As discussed in §4, interpolation of variably-spaced samples from predictors 
that are underlyingly continuous over time (e.g. ambient noise level) is 
appropriate and in fact necessary to avoid distortion in CDR’s event-based 
convolution procedure.  

9 Aside from our own recent studies that apply CDR to psycholinguistic data 
(Shain, 2019; Shain, Blank, van Schijndel, Schuler, & Fedorenko, 2020; Shain & 
Schuler, 2018).  
10 Other kernel types, including power law kernels h(t) = α

(t+β)η+1 (Lapham, 
2014), non-parametric basis kernels (Zhou, Zha, & Song, 2013), and self- 
regulating neural network kernels (Mei & Eisner, 2017), are also widely used. 
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expected waiting time until the next event given the history (Cooper, 
2005). Parameters μ, α, and β are usually estimated from data using non- 
linear numerical optimization (Ozaki, 1979). This framework has been 
generalized in many ways, including extension to multivariate event 
data (i.e. simultaneous modeling of multiple event streams; Embrechts, 
Liniger, & Lu, 2011), extension to marked processes that contain re-
gressors in addition to timestamps (Lapham, 2014), and the use of 
recurrent neural network intensity functions (Mei & Eisner, 2017). 

Although both CDR and Hawkes processes involve a continuous 
parametric convolution over the time dimension, a fundamental dif-
ference between them is that CDR seeks to model a designated response 
variable while Hawkes processes seek to model the future temporal 
realization of the sequence of events. To our knowledge, no existing 
formulation of Hawkes process models can be used to address the tem-
poral diffusion problem targeted in this study. 

4. Mathematical definition 

The mathematical definition of CDR was previously proposed in 
Shain and Schuler (2018). For convenience, we reproduce it in §4.1, 
revised for clarity. The remainder of this section (§4.2, §4.3, §4.4, and 
§4.5) exposits additional mathematical properties of CDR. 

4.1. CDR (fixed effects) model 

For clarity, here we define a fixed-effects-only variant of CDR. The 
full model with random effects is defined in Appendix A.1. The CDR 
model assumes the following quantities as input:  

• X ∈ ℕ: Number of predictor observations  
• Y ∈ ℕ: Number of response observations  
• K ∈ ℕ: Number of predictors  
• R ∈ ℕ: Number of impulse response parameters  
• J ∈ ℕ: Number of unique time series11  

• X ∈ ℝX×K: Design matrix of X predictor observations of K dimensions 
each  

• y ∈ ℝY: Vector of Y response observations  
• t ∈ ℝX: Vector of timestamps associated with each observation in X  
• t′ ∈ ℝY: Vectors of timestamps associated with each observation in y  
• s ∈ {1, 2, …, J}X: Vector of time series IDs associated with each 

observation in X  
• s′ ∈ {1, 2, …, J}Y: Vectors of time series IDs associated with each 

observation in y  
• gk(t; θ) ∈ ℝ+ → ℝ for k ∈ {1, 2, …, K}: Parametric IRF kernels 

specifying response at time t given parameters θ, one for each of K 
predictors 

A single dataset may contain multiple time series. For example, a 
psycholinguistic experiment may contain data from several participants, 
each of whom read several texts. Each participant-text pair could be 
treated as a unique time series. Different time series are considered 
statistically independent and are indexed by unique time series IDs 
(represented in s and s′). Note that X (number of predictor observations) 
and Y (number of response observations) can differ in a CDR model 
because X will be forced into a conformable dimensionality with y via 
convolution over time (see X′; below). This property permits CDR 

analysis of predictor/response streams with different acquisition times. 
CDR seeks to estimate the following quantities, which mediate be-

tween X and y:  

• a scalar intercept μ ∈ ℝ  
• a vector u ∈ ℝK of K coefficients12  

• K vectors vk ∈ ℝR of R IRF kernel parameters for K predictors  
• a scalar variance σ2 ∈ ℝ+ of the response 

To support convolution, we define a mask F ∈ {0, 1}Y×X that admits 
only those observations in X that precede each y[y] in the same time 
series, for 1 ≤ x ≤ X, 1 ≤ y ≤ Y: 

F[y,x]=
def

⎧
⎨

⎩

1
(

s[x] = s′

[y]

)
and

(
t[x] ≤ t′[y]

)

0 otherwise
(7) 

We further define K sparse convolution matrices Gk ∈ ℝY×X for k ∈
{1, 2, …, K}: 

Gk=
defgk(t

′1⊤ − 1t⊤; vk) ⊙ F (8) 

The convolution that yields the design matrix of convolved pre-
dictors X′ ∈ ℝY×K is then defined using a product of the convolution 
matrices and the design matrix: 

X′

[*,k]=
defGk X[*,k] (9) 

The full model mean is the sum of (1) the intercepts and (2) the 
product of the convolved predictors and the coefficient parameters: 

y ∼ N
(
m+X′ u, σ2) (10) 

A summary table of all variable definitions in the full (mixed effects) 
model is provided in Appendix Table A1, and a step-through example of 
the equations in the full model is provided in Appendix A.3. 

Note that this is an event-based implementation of convolution that 
is only exact when the predictors fully describe discrete impulse signals. 
Exact convolution of samples from continuous signals is generally not 
possible because the signal is generally not analytically integrable. For 
continuous signals, the CDR procedure above defines a Riemann sum 
approximation of the integral as long as (1) the predictor is sampled at a 
fixed frequency or (2) the predictor is interpolated at a fixed frequency 
between variably-spaced samples. 

4.2. Effect estimates in (fixed effects) CDR 

Many scientific applications of linear modeling involve testing a null 
hypothesis about the scalar-valued effect estimate obtained for a pre-
dictor (e.g. that it is equal to 0). Because CDR models estimate contin-
uous functions of time rather than scalars (as in linear regression), the 
estimated IRF must be distilled into a scalar in order to yield a compa-
rable notion. Here, we define CDR effect estimates by integrating the 
IRFs, since the integral describes the total expected influence on the 
response from observing a unit impulse of each predictor. In particular, 
the unscaled and scaled fixed effect estimates g, g′ ∈ ℝK are defined as 
follows, where scaling is performed using the coefficient vector u (§4.1): 

g[k]=
def

∫ ∞

0
gk(t; vk)dt (11)  

11 J ≪ X, Y because each time series indexed by {1, …, J} contains many 
predictor and response observations. 

12 Throughout this paper we use the term coefficients to refer to what are often 
called slopes in linear models. This is to avoid falsely implying that the co-
efficients represent straight-line functions of the predictors, when in fact they 
are applied non-linearly to the predictors via the impulse response. Alterna-
tively, the coefficients can be construed as slopes on the convolved predictors X′, 
as shown in eq. 10. 
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g′

=
defg ⊙ u (12) 

Due to considerations that arise in mixed effects CDR models (Ap-
pendix A.2), we constrain the IRFs gk to have a unit integral over the 
positive real line: 

1 =

∫ ∞

0
gk(t; θ)dt; k ∈ {1, 2,…,K}, θ ∈ ℝR (13) 

An important implementational consideration for finite training data 
is that the model will not have empirical support over the positive 
infinite real line, and thus the infinite integral involves some degree of 
extrapolation. To ensure that effect estimates have strong empirical 
support, in practice we upper bound the integral in Eq. (13) to the 75th 
percentile of temporal offsets seen in training. We consider this to be a 
reasonable default that concentrates the effect estimate on empirically 
well-attested regions of the support of the IRF. However, particular 
research questions may motivate the use of other kinds of bounds (e.g. if 
the research domain imposes a principled constraint on the duration of 
interest for the IRF). 

4.3. The deconvolutional intercept 

In linear regression, the intercept is a bias term implemented by 
fitting a coefficient to a vector of ones, one for each data point. The 
intercept term estimates the base response of the system when the other 
predictors are equal to 0. Because CDR contains a linear model on the 
convolved predictors (Eq. (10)), it is just as important to include an 
intercept term in CDR models as in linear ones. However, in a decon-
volutional setting, it is also possible that the response is partially 
described by the timing of stimuli alone, independently of their proper-
ties. This possibility can be brought under control by additionally 
convolving the intercept with an estimated impulse response. Anala-
gously to a linear intercept term, this convolved intercept estimates the 
base response of the system when the other predictors are equal to 0, but 
unlike the linear intercept, the convolved intercept is sensitive to stim-
ulus timing. The estimate for the deconvolutional intercept is therefore 
the expected change in the response over time from observing an event, 
regardless of the properties of that event. We refer to this deconvolu-
tional intercept as rate (see also e.g. Brennan, Stabler, Van Wagenen, 
Luh, & Hale, 2016), and we consider it to be an essential control to 
include in CDR models. Without it, variance in the response due to event 
timing must be captured by other components in the model, which is 
potentially problematic for interpretation and hypothesis testing. 

Depending on the problem definition, rate effects may have a theo-
retical interpretation. For example, as argued in §7, a negative rate es-
timate in reading data can be seen as an inertia effect, since the negative 
rate contributions of preceding words compound to suppress reading 
times on the current word as a function of their recency. In other words, 
fast reading in the recent past will engender fast reading now, a possi-
bility which rate estimates allow the model to account for. 

Note that rate can only be estimated in a continuous-time deconvo-
lutional setting because variation over time in the rate of events is 
necessary to identify it. In an FIR model, the rate predictor is equal to 1 at 
every timestep, rendering it identical to the intercept. The ability to 
detect rate effects in variably-spaced time series is a major advantage of 
CDR. 

4.4. Scale and shift in CDR models 

Linear models are invariant to transformations that rescale and/or 
shift the design matrix, in that for a linear model f with intercept p, 
slopes q, predictors X, scale vector r, and shift vector s, the following 
identity holds: 

f (X diag(r) + 1s⊤ ; p,q) = p + (X diag(r) + 1s⊤ )q
= p + s⊤q + X diag(r)q
= f (X; p + s⊤q,diag(r)q )

(14) 

In other words, a linear model of shifted/rescaled X is equivalent to a 
shifted/rescaled linear model of X. This result entails that (non-inter-
acted) predictors can be shifted and rescaled (e.g. standardized) prior to 
fitting without altering the solution, which can help with numerical 
optimization of complex linear models. 

In a non-linear optimization setting such as that required for CDR, 
normalization can be helpful for accelerating convergence (Ba, Kiros, & 
Hinton, 2016; Ioffe & Szegedy, 2015; Salimans & Kingma, 2016), and we 
therefore explore the impact of scale and shift of the inputs to CDR 
models. Invariance under rescaling follows trivially from Eq. (9). It also 
follows from Eq. (9) that CDR is not invariant under additive shift s: 

Gk
(
X[*,k] + 1s[k]

)
= Gk X[*,k] +Gk 1s[k] (15) 

As shown, the shift scalar s[k] is also convolved with Gk, resulting in 
an additional term Gk 1s[k] ∈ ℝN which cannot be absorbed by the 
intercept because its value differs for each data point (unlike s⊤q in Eq. 
(14), whose value is identical for all elements of X). However, note that 
by convolving a matrix of ones, Gk 1s[k] implicitly defines a deconvo-
lutional intercept term with IRF gk and scale u[k]s[k]. In other words, 
shifting K predictors introduces K deconvolutional intercepts, each with 
IRF shape and scale tied to the shape and scale estimates of the pre-
dictors themselves. Since these deconvolutional intercepts are summed 
together in Eq. (10) and convolution obeys the distributive property, 
they together define a new impulse response g0 for the deconvolutional 
intercept: 

g0(t) =
∑K

k=1
u[k]s[k]gk(t) (16) 

Since g0(t) = 0 can only be guaranteed if s = 0, the model is not 
invariant under shift. However, in models with an explicit rate predictor 
as recommended in §4.3, g0 simply modulates the IRF estimate for rate. 
Under the conventional assumption that the intercept (rate predictor) is 
the first column of the design matrix X, the implicit kernel g1

′ for the 
deconvolutional intercept in models with shift can be computed as: 

g′

1(t) = g0(t)+ g1(t) (17) 

The deconvolutional intercept thus does “absorb” shift in a limited 
sense. It must nonetheless be kept in mind that unless identity is 
enforced between g1, …, K, the estimated shape of g1

′ will consist of a sum 
of response kernels and can therefore fall outside the solution space 
defined by the parametric IRF kernel assigned to rate. 

4.5. Multicollinearity 

The formulation in Eq. (10) is simply a linear model on the convolved 
design matrix X′. Therefore, the primary difference between linear and 
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CDR models is that CDR additionally infers the parameters that generate 
X′ jointly with the model intercept and coefficients. 

Since CDR depends internally on linear combination to generate its 
outputs, it is vulnerable to confounds from multicollinearity (correlated 
predictors) in much the same way that linear models are. In linear 
models, multicollinearity increases uncertainty about how to allocate 
covariation between predictors and response, since the predictors 
themselves covary. In the extreme case of perfect multicollinearity (i.e. 
one or more predictors are an exact linear combination of one or more 
other predictors), the model has no solution (Neter, Wasserman, & 
Kutner, 1989). 

Multicollinearity in CDR works in much the same way, with the 
added complexity that CDR models also have a temporal dimension 
which may allow the fitting procedure to discover real characteristics of 
the global impulse response structure while struggling proportionally to 
the degree of multicollinearity to decompose that structure into 
predictor-specific IRFs. To understand this, note that the expected 
response t seconds after stimulus presentation is a weighted sum of the 
IRFs at t, with weights provided by the predictor values of the stimulus. 
When multicollinearity is low, the expected overall response can vary 
widely from one stimulus to another, since the IRFs are reweighted at 
each stimulus by roughly orthogonal predictor values. This variation in 
expected overall response provides clues to the system as to the 
magnitude, direction, and temporal shape of the individual response to 
each predictor. As multicollinearity increases, the expected overall 
response increasingly converges to a single shape which is shared across 
all stimuli (albeit scaled by the stimulus magnitude). In this setting, the 
model should still be able to correctly recover the global response 
characteristics, but may decompose it into predictor-specific responses 
that increasingly deviate from the true data generating model. In the 
extreme case of perfect multicollinearity, the expected response has an 
identical shape for each stimulus, and the model will construct IRFs 
whose summation approximates the true global response profile but 
whose attribution of IRF components to predictors is arbitrary. 

Empirical results (§6.3) indicate that CDR models are quite robust to 
multicollinearity. Nonetheless, models fitted to highly collinear data 
should be interpreted with caution, and perfectly collinear data should 
be avoided altogether. As in linear models, multicollinearity can be 
avoided by orthogonalizing predictors in advance (e.g. via principal 
components analysis). Empirical evaluation of orthogonalization pro-
cedures in the CDR setting is left to future work. 

4.6. Hypothesis testing 

The ultimate scientific purpose of most statistical models is to test a 
claim about nature. Hypothesis testing is challenging in a CDR context 
for two reasons. First, familiar hypothesis tests using e.g. standard errors 
in linear models are unavailable for CDR, since it lacks analytical esti-
mators for uncertainty about its parameters. As a result, exact null hy-
pothesis significance tests cannot be performed on the basis of a single 
model. Single-model tests are nonetheless also problematic in a linear 
regression context when predictors are collinear (Neter et al., 1989), a 
pervasive issue in psycholinguistics that has motivated a shift toward 
ablative tests based on model comparison (Frank & Bod, 2011). Second, 
reliance on stochastic optimization of a non-convex objective function13 

introduces estimation noise through the possibility of imperfect 
convergence to an optimum or convergence to a non-global optimum. As 
a result, training likelihood cannot be guaranteed to be maximized, 
which can result in degenerate outcomes for in-sample ablative tests 
(e.g. the ablated model can have better likelihood than the full model). 

For this reason, two tests that are commonly used for linear models may 
be unreliable for CDR. First, tests based on credible intervals (e.g. whether 
the 95% credible interval for an effect estimate includes 0) may be unre-
liable because the credible intervals produced by (variational) Bayesian 
CDR reflect the local neighborhood of the discovered solution (optimum), 
which may not account for the existence of more distant optima.14 Credible 
intervals tests in CDR are therefore anticonservative. Indeed, the analyses 
reported below show that CDR-estimated credible intervals tend to be very 
tight. Second, likelihood ratio testing (LRT) may be unreliable because the 
test statistic is a function of the maximum likelihood estimates, and CDR 
likelihood cannot be guaranteed to be maximized. Instead, we consider two 
types of hypothesis test for CDR models: (1) a direct test by bootstrap 
comparison of model fit to out-of-sample data, and (2) a 2-step test in 
which CDR is used first to estimate a data-driven convolution X′ of the 
design matrix X and then existing statistical models (e.g. OLS, LME, GAM) 
are fitted to X′ and used to perform the test. 

To perform a direct test, training and evaluation sets must be created, 
either by running two separate experiments or by partitioning the data 
from a single experiment.15 Two CDR models are fitted to the training 
set, one with a fixed effect for the variable to be tested (full model), and 
one without one (ablated model). Out-of-sample error vectors are then 
generated by predicting from each model on the evaluation set, and an 
aggregate test statistic (e.g. absolute difference in mean squared error) is 
computed over the two vectors. To perform the test (a paired permu-
tation test), an empirical distribution is created for the test statistic: for n 
iterations, the by-item errors from each model are randomly swapped 
pairwise to generate two new error vectors, and a new test statistic over 
the resampled errors is computed and stored. The test rejects the null 
hypothesis at level α if the observed test statistic is greater than (1 − α) 
× 100% of the resampled test statistics. 

To perform a 2-step test, a single CDR model containing all fixed 
effects of interest is fitted to the data, and the predictors are convolved 
using the estimated IRFs. Standard statistical models (e.g. OLS, LME, 
GAM) are then fitted to the convolved predictors and used to perform 
any of the tests that they support (e.g. LRT). Note that to perform an 
ablative test like LRT in a 2-step setting, the ablation is only applied at 
the second step (e.g. the LME stage). If ablation is also applied at the 
CDR stage, then the predictors in the full and ablated models are not 
necessarily the same, invalidating the test. 

Both tests potentially suffer from non-convexity, since they are both 
conditional on possibly sub-optimal IRF estimates. Nonetheless, we offer 
the following arguments in defense of using CDR for hypothesis testing. 
First, the synthetic experiments reported in §6 show a strong tendency 
for CDR to closely recover the true data-generating model, even under 
adverse training conditions like variably spaced events, multi-
collinearity, and ill-fitting IRF kernels. We thus have empirical reason to 
believe that convergence to a bad optimum is not a serious problem in 
practice. Second, the assumption that the models fall within a tolerance 
of the global optimum (i.e. are “good enough”) also underlies ablative 
tests in popular linear regression libraries like lme4, which use numerical 

13 The objective function maps predictors and responses to a scalar value that 
the model attempts to optimize. In this study, the objective to be maximized is 
the (regularized) training likelihood of the response given the predictors. The 
objective is non-convex if it has multiple optima, i.e. “peaks” in parameter space 
where the objective is higher than it is at intermediate values of the parameters. 
The implementation applied in this study employs a widely used optimizer for 
deep neural networks (see §5), where non-convexity is a pervasive issue. 
Although empirically successful in many prior applications, the optimizer 
cannot guarantee convergence to the global (best) optimum. 

14 Maximum likelihood CDR models do not estimate uncertainty, and there-
fore CDR does not support (frequentist) confidence intervals.  
15 When partitioning and/or filtering outliers prior to CDR fitting, it is 

important to keep in mind that partitioning and outlier filtering should only be 
performed on the response vector. Partitioning/filtering the design matrix is 
equivalent to assuming that the removed events did not take place, which can 
distort the IRF estimates. The CDR software library described in §5 provides 
utilities for data partitioning and filtering, which automatically apply only to 
the response data. 
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optimization and define a tolerance-based stopping criterion. Third, in 
pursuit of understanding complex non-linear phenomena like human 
language comprehension, CDR may permit discovery of previously un-
known patterns precisely by relaxing the strict linearity and indepen-
dence assumptions that support linear models’ convenient statistical and 
mathematical properties. Optimality guarantees are of little value if the 
underlying generative process lies far outside the model’s solution 
space. 

The direct test potentially suffers more than the 2-step test from the 
issue of non-convexity, since in the 2-step test the coefficients benefit 
from convergence guarantees at the second step (e.g. LME) and the IRFs 
do not vary with ablation. However, the 2-step test potentially suffers 
more than the direct test from multicollinearity, since it cannot adjust IRF 
shapes in the ablated model that might have been influenced by multi-
collinear predictors in the full model. And although the 2-step procedure 
alone can guarantee maximum training likelihood conditional on the 
fitted IRF, this may not be of critical importance because the direct test 
does not implicitly require that training likelihood is maximized, since it 
is based on out-of-sample error rather than asymptotic distributional 
guarantees (cf. e.g. LRT, which relies on the result that the likelihood 
ratio test statistic asymptotically has a chi-squared distribution; Wilks, 
1938). Indeed, because of the possibility of overfitting (memorizing noise 
in the training data), much research in statistics and machine learning 
has been dedicated to the study of regularization techniques and stopping 
criteria that avoid minimizing training error in pursuit of minimizing 
generalization error (Raskutti, Wainwright, & Yu, 2014; Srivastava, 
Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014; Yao, Rosasco, & 
Caponnetto, 2007), and out-of-sample bootstrap model comparison is 
one of the most widely used statistical tests for non-convex model com-
parison in machine learning (Demšar, 2006). Refocusing on out-of- 
sample rather than in-sample performance has the added benefit of 
building external model validity directly into the statistical test, which is 
potentially timely in light of growing concern over the replication crisis 
in psychological science (Gilmore, Diaz, Wyble, & Yarkoni, 2017; Makel 
& Plucker, 2014; Open Science Collaboration, 2015; Pashler & Wagen-
makers, 2012; Simons, 2014; Yarkoni & Westfall, 2017). For this reason, 
we argue that the direct test is a defensible method for evaluating sci-
entific hypotheses using CDR. 

One possibility we also consider is a hybrid of these two approaches 
where 2-step fitting is used over the training set and then the second step 
fits are used to perform an out-of-sample non-parametric test. This 
approach would allow the second step fit to find globally optimal co-
efficients (regression weights) in the event that those discovered by CDR 
were sub-optimal. While this approach may be slightly more conserva-
tive than the direct test, we believe it has little practical utility because 
CDR is very good at finding optimal coefficients. Table 1 shows aggre-
gated fixed-effects estimates obtained by running LME models over the 
CDR-convolved data X′ from the both the synthetic and the human 
experimental datasets analyzed in this article. If the CDR-estimated co-
efficients are globally optimal given the impulse responses, then the 
LME estimates for all fixed effects should be 1. As shown, the LME- 
estimated fixed effects indeed cluster tightly around 1 for all three 
inference types explored here. This outcome suggests that CDR offers 
little room for improvement on its coefficient estimates, supporting the 

adequacy of the direct test for out-of-sample comparison. 
In settings where the lack of optimality guarantee is unacceptable, 

CDR can still be a useful tool for data exploration, since it can estimate 
and visualize likely response profiles for predictors of interest (on 
exploratory data). Those estimates can then be used to construct effective 
and parsimonious FIR models. For example, suppose researchers have 
obtained a CDR-estimated IRF for predictor A which decays to near 0 in 
300 ms, and that the mean interval between events in their experiment is 
250 ms. This finding suggests they might be able to capture most of the 
temporally diffuse response to A simply by inserting one additional 
spillover regressor for A into their linear model. This kind of information 
would otherwise be difficult to obtain without first fitting models with 
multiple different spillover configurations of the same predictors, a 
computationally-intensive procedure. CDR can also be used to overcome 
the inability of discrete-time models to estimate generalized effects of 
stimulus timing (§4.3) by estimating a convolved rate predictor which can 
be added as an effect to standard regression models. Results in §7 indicate 
that this may be particularly important for some psycholinguistic 
response variables, especially response times in self-paced reading. 

5. Methods 

The experiments described in this article apply an open-source Py-
thon implementation of the CDR model described in §4 
(https://github.com/coryshain/cdr), built using the Tensor-
flow (Abadi et al., 2015) and Edward (Tran et al., 2016) machine 
learning libraries. Eq. (10) is implemented as a Tensorflow computation 
graph and optimized using either MLE or variational Bayesian inference. 

5.1. Initialization 

CDR fits are initially centered at the null model, i.e. a model in which 
there is no relationship between the predictors and response. In such a 
model, the intercept is the population mean, the variance is the popu-
lation variance, all coefficients are 0 (predictors have no influence on 
the response), all random effects (Appendix A.1) are 0 (there is no 
random deviation from the population means), and the IRF shapes are 
inconsequential (there is no response to the predictors). Thus, μ is 
initialized at the mean of the response, σ2 is initialized at the variance of 
the response, and all coefficients and random effects are initialized at 
0.16 Appropriate initializations for the fixed IRF parameters vk are 
domain-specific, although kernels supported by our implementation 
come with overridable defaults as laid out in the documentation. The 
kernel initializations used in this study are described in §5.3. 

5.2. Convergence 

Because these CDR models use stochastic gradient optimization, it is 
necessary to define a convergence criterion by which the model pa-
rameters can be deemed (locally) optimal. Intuitively, the model has 
converged when it has ceased to improve with training. Diagnosing this 
condition automatically and model-independently is challenging 
because (1) the absolute rate of change in the loss over time depends on 
the scale of the data and the definition of the model and (2) the change in 
loss per iteration can be both noisy and non-decreasing due to stochastic 
optimization over a non-convex surface. 

We address these challenges by retaining a history of the losses over a 
finite number of timesteps n and declaring convergence when the loss is 
uncorrelated with training time at a predetermined significance level α. 
Basing the convergence criterion on correlation eliminates any influence 
of scale on either the loss or the representation of training time, instead 
grounding convergence in the strength of the linear relationship 

Table 1 
Distribution of fixed effects estimates of LME models fitted to CDR-convolved 
synthetic and human subjects (Experimental) data (median, 25th percentile, 
and 75th percentile). Estimates concentrate near 1, indicating that CDR- 
estimated coefficients are generally close to the global optimum given the IRF.   

Synthetic Experimental 

Inference Median 25% 75% Median 25% 75% 

MLE 1.000 1.000 1.001 1.002 0.997 1.011 
BBVI.imp 1.000 1.000 1.000 1.002 0.997 1.014 
BBVI 1.010 1.002 1.076 1.003 0.973 1.027  

16 The coefficients are m and the random effects are defined in Appendix 12.1 
as u, U, and Vk. 
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between these two quantities. To reduce the influence of noise and high- 
frequency autocorrelation on the test statistic, we also permit a stride 
length m such that losses are only pushed to the history every m itera-
tions, with intermediate values aggregated through a moving average. 

In particular, given a vector of losses by iteration l ∈ ℝ⌈n/m⌉, and a 
vector t ∈ ℤ⌈n/m⌉ of corresponding iteration numbers, we define corre-
lation of loss with training time as a test statistic: 

ρt=
defcorr(l, t) (18) 

Given a significance level α, the null hypothesis H0t=
defρt = 0 can be 

tested by computing probability pρt using a Student’s t distribution with 
⌈n/m⌉ − 2 degrees of freedom and checking that pρt < α. When this test 
fails to reject H0t, the losses are uncorrelated with training time (ρt is 
insignificantly different from 0 at level α). 

This correlation-based hypothesis test defines binary criterion s: 

s=def
{

1 pρt > α
0 otherwise (19) 

In other words, s = 1 if and only if H0t is retained. To avoid premature 
convergence when by chance ρt happens to have small magnitude, we 
additionally store the history of values of s from each of the past ⌈n/m⌉ 
strides in vector s ∈ {0, 1}⌈n/m⌉ and compute a proportion ps of suc-
cessful convergence checks: 

ps=
defm‖s‖1

n
(20) 

We declare the model converged when ps > α (i.e. when at least α ×
100% of the previous ⌈n/m⌉ convergence checks were positive). The 
overall stringency of this criterion increases with both n/m (because the 
test is higher-powered) and α (because the tests reject at a higher 
threshold and a larger proportion ps is required). Experiments reported 
in this study use the following convergence hyperparameters: n = 500, 
m = 1, and α = 0.5. In other words, convergence is declared when H0t is 
retained at α = 0.5 for at least 50% of the previous 500 training 
iterations. 

5.3. Experimental procedure: General model parameters 

In all experiments reported in this article, CDR models are fitted 
using the Nadam optimizer (Dozat, 2016)17 with a constant learning rate 
of 0.001 and minibatches of size 1024. Nadam is a gradient-based 
optimizer that performs well for many non-convex optimization 

problems, and 0.001 is a widely-used default learning rate (see Ten-
sorflow documentation: https://www.tensorflow.org/). Mini-
batch sizes in powers of two improve efficiency on standard compute 
architectures, and we found during development that a size of 210 

roughly optimized iteration speed on our available hardware. These 
parameters were not otherwise systematically tuned. 

In order to compare estimation methods, all models are fitted using 
maximum likelihood estimation (MLE), black-box variational inference 
with independent improper uniform priors and independent normal pos-
teriors (BBVI-improper), and black-box variational inference with inde-
pendent normal priors and posteriors (BBVI).18 BBVI-improper and BBVI 
use the same black box estimation procedure. The only difference between 
them is that BBVI-improper lacks any penalties for divergence from a prior. 

The analyses reported below in this article reveal dramatically faster 
convergence in BBVI inference mode than in MLE or BBVI-improper 
modes. This asymmetry is demonstrated by Fig. 4, which shows (1) 
the mean number of training iterations (complete passes through the 
training data) across all experimental conditions and (2) the mean ratio 
of training iterations to the minimum number of iterations used by any 
model within the same experimental condition. As shown, BBVI requires 
on average less than half as many training iterations as MLE or BBVI- 
improper to reach convergence (Fig. 4a) and nearly always requires 
fewer iterations than MLE or BBVI-improper in any given model 
configuration (Fig. 4b). We speculate that the priors may discourage the 
model from following tiny gradients, thereby accelerating convergence. 
Because of this computational advantage, we expect BBVI to be the most 
useful estimation method and therefore perform all subsequent model 
comparisons (both for null hypothesis significance testing and for 
comparison of CDR to baselines) using BBVI-estimated CDR models, 
even when other estimation techniques achieve better error. 

In the BBVI setting, reasonable prior variances for intercepts, co-
efficients, and error depend on the scale of the response. For this reason, 
our CDR implementation uses the variance of the response in the 
training set as the prior variance for these parameters. Reasonable prior 
variances for the impulse response parameters are independent of the 
scale of the response. For simplicity, we use a variance of 1. In order to 
improve both convergence and general applicability of the hyper-
parameters used in this study to other kinds of data, we implicitly 
standardize (z-transform) the response variable prior to fitting, then 
invert this transform in order to compute predictions and likelihoods. As 
a result, all BBVI priors used in this study have unit variance and mean 

Fig. 4. Median training time by inference type. Error bars show empirical 1st and 3rd quartiles.  

17 The Adam optimizer (Kingma & Ba, 2014) with Nesterov momentum 
(Nesterov, 1983) 

18 Although our software implementation includes experimental support for 
multivariate normal priors and variational posteriors, this results in a quadratic 
increase in the number of parameters, and we have not found it to provide any 
performance benefit. 
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equal to the initialization value used in MLE inference (described below 
for IRF parameters and in §5.1 for all other parameters). 

While it is in principle sensible in a BBVI setting to use the prior as 
the initial value for the variational posterior, in practice we have found 
that doing so can lead to training divergence in complex models due to 
early initial sampling of poor solutions from an excessively wide dis-
tribution. We therefore initialize the variational posterior with a tighter 
standard deviation (one one-hundredth of the standard deviation of the 
prior) in all BBVI-improper and BBVI models. Note that this is merely an 
initialization technique — the model can adjust the width of the varia-
tional posterior throughout training as required by the data. 

It is standard practice in mixed-effects modeling to penalize the 
random effects (Bates et al., 2015). In all psycholinguistic analyses with 
random effects reported below, we follow Bates et al. (2015) by penal-
izing all random effects (random intercepts, coefficients, and impulse 
response parameters, see Appendix A.1) using L2 regularization with 
regularization level λ = 1.0. In the BBVI setting, we implement a similar 
kind of constraint by imposing a tighter prior on the random effects than 
on the fixed effects (standard deviation of 0.1 and 1.0, respectively). 

The BBVI priors used in this study were not tuned in any way, and 
different priors may be motivated for different datasets based on fore-
knowledge of the experimental domain. The size of the hyperparameter 
space explored in this study is so large that additional systematic 
exploration of the influence of different prior settings is computationally 
prohibitive and left to future work. That said, the present results suggest 
that our choices of priors do not strongly constrain the solution space, 
since BBVI inference finds qualitatively similar responses to the BBVI- 
improper and MLE inferences, which have no priors (see Appendix C). 

Models reported here use some combination of exponential, normal, 
shifted gamma, and pseudo non-parametric linear combination of Gauss-
ians (LCG) impulse response kernels. The exponential, normal, and shifted 
gamma kernels are the probability density functions associated with each 
type of probability distribution, with the addition of normalization terms 
to ensure that IRFs integrate to 1 over the positive real line (§4.2). For these 
parametric kernels, the normalization term is the survival function of the 
distribution (complement of the cumulative density function) at x = 0. 

The probability density functions of the exponential, normal, and 
shifted gamma distributions are respectively: 

fExp(x; β) = − βe− βx (21)  

fNormal
(
x; μ, σ2) =

1
̅̅̅̅̅̅̅̅̅̅
2πσ2

√ e
− (x− μ)2

σ2 (22)  

fShiftedGamma(x; α, β, δ) =
βα(x − δ)α− 1e− β(x− δ)

Γ(α) (23) 

The exponential distribution integrates to 1 over the positive real line 
and requires no further normalization. For the normal and shifted gamma 
kernels, we require the corresponding survival functions: 

SNormal
(
x; μ, σ2) = 1 −

1
2

(

1+ erf
(

x − μ
σ

̅̅̅
2

√

))

(24)  

SShiftedGamma(x; α, β, δ) = 1 −
1

Γ(α) γ(α, β(x − δ) ) (25)  

where 

erf (x) =
1̅
̅̅
π

√

∫ x

− x
e− t2 dt (26)  

γ(s, x) =
∫ x

0
ts− 1e− tdt (27) 

Thus, the exponential, normal, and shifted gamma IRF kernels are 
defined respectively as: 

Exp(x; β) = fExp(x; β) (28)  

Normal
(
x; μ, σ2) =

fNormal(x; μ, σ2)

SNormal(0; μ, σ2)
(29)  

ShiftedGamma(x; α, β, δ) =
fShiftedGamma(x; α, β, δ)
SShiftedGamma(0; α, β, δ)

(30) 

These kernels encode increasingly flexible assumptions about the 
response shape. In particular, the exponential kernel assumes that the 
influence of a predictor is strongest immediately (at t = 0) and de-
creases monotonically over time. The only question is how quickly, 
which is determined by the rate parameter β. The normal kernel relaxes 
this monotonicity assumption. Like the exponential kernel, it can fit 
monotonically decreasing IRFs (by finding location μ ≤ 0), but it can 
also fit late-peaking (rising then falling) IRFs (by finding μ > 0), 
allowing the peak response to occur at some delay from the stimulus (e. 
g. Smith & Levy, 2013, who found a peak surprisal response on the 
following word in a self-paced reading experiment). In the latter case, 
the normal kernel assumes a symmetric rise/fall pattern. The shifted 
gamma kernel additionally relaxes the symmetry assumption. It can 
find approximately symmetric late-peaking IRFs, but it can also find 
IRFs that e.g. rise quickly and then decay slowly. The shifted gamma 
kernel approximately subsumes the solution space of the normal kernel, 
which approximately subsumes the solution space of the exponential 
kernel. 

As mentioned above, we also construct a quasi-non-parametric 
comparison kernel consisting of a linear combination of Gaussians 
(LCG; Goshtasby & O’Neill, 1994; Gimel’farb, Farag, & El-Baz, 2004). 
The LCG kernel contains n component normal kernels, each with loca-
tion, scale, and amplitude parameters. Having a more flexible control 
allows us to assess the extent of bias introduced by parametric kernels 
when applied to real world data in which the ground-truth IRF is un-
known (§7, §8). This LCG kernel is defined as: 

LCG
(

x; μ1,…,n, σ2
1,…,n, β1,…,n

)
=

∑n
i=1fNormal

(
x; μi, σ2

i

)
⋅βi∑n

i=1SNormal(0; μi, σ2
i )⋅βi

(31) 

The LCG kernel is highly flexible (see §6, §7, and §8), yet computa-
tionally efficient, since it has an analytical normalization constant (the 
sum of the component survival functions). More expressive kernels are 
possible, such as spline functions or kernel smoothing, but these do not 
have analytical integrals and therefore require numerical integration at 
each optimization step in order to properly normalize them. In initial 
experiments, we found this to greatly slow training without clear 
improvement to final fit, and we therefore use LCG for our non- 
parametric comparison. In these experiments, all LCG kernels have 10 
components. The choice of kernel type thus has a substantial influence 
on the size of the parameter arrays estimated by the model. For example, 
assuming that all predictors share an exponential kernel, then the IRF 
parameter vectors vk would each be of size 1 (the rate parameter β), 
whereas they would be of size 3 for shifted gamma (rate α, scale β, and 
shift δ) and size 30 for LCG (location μ, scale σ, and amplitude β for each 
of the 10 components). 

Beyond any constraints imposed by the definitions of the density 
functions above, the shifted gamma kernel additionally requires that α >
1 and δ < 0.19 Constraints on bounded parameters are enforced using the 
softplus bijection: 

softplus(x) = log(ex + 1) (32) 

All models use the same default initializations for these kernels. For 
exponential kernels, β = 1. For shifted gamma kernels, α = 2, β = 1, and δ =
− 1. For normal kernels, μ =0 and σ2 =1. For the LCG kernels, μi =0, σi

2 = i 

19 α > 1 helps deconfound the shape and shift parameters by ensuring that the 
response underlyingly has a rising-falling profile, in which case strictly falling 
responses can only be found by shifting the peak to the left of 0. δ < 0 ensures 
that the instantaneous response (response at x = 0) is well defined. 
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and βi = 1 if i = 0, βi = 0 otherwise for i ∈ {1, …, 10}. This initializes the 
kernel with a single non-zero component, and with incrementally wider 
initial components to allow the model to find later or earlier peaks. 
Initializing all components with β = 0 leads to numerical degeneracies 
because of the requirement that the LCG function integrate to 1. 

Prediction from the network uses an exponential moving average of 
parameter iterates with a decay rate of 0.999. BBVI models are evaluated 
using maximum a posteriori estimates obtained by setting all parameters to 
their posterior means. This procedure is motivated by the law of large 
numbers: because all parameters have independent normal distributions 
in the variational posterior, samples from that posterior converge in 
probability to the posterior mean. For computational reasons, we trun-
cate predictor histories at 256 timesteps (words) into the past. 

6. Synthetic evaluation 

Before applying CDR to human-generated time series, we first 
empirically validate it through simulations using synthetic data with 
known ground-truth impulse responses, since this permits direct com-
parison of the CDR estimates to the true data-generating model. In the 
process, we systematically explore the sensitivity of CDR estimates to 
several potential sources of influence that are likely to arise in practice: 
noise in the response variable, non-uniform time intervals between 
events, multicollinearity, and misspecification of the impulse response 
kernel. As shown below, CDR recovers the data-generating model in a 
wide range of settings and is robust to adverse training conditions like 
multicollinearity and IRF misspecification. 

6.1. Simulation design 

Several design details are common to all simulations reported 
here. All datasets contain twenty randomly generated predictors. In 
all simulations except the multicollinearity manipulations, these 
twenty predictors are sampled from independent standard normal 
distributions. In all datasets, ground-truth coefficients for each pre-
dictor are sampled from a uniform distribution U ( − 10,10), and a 
ground-truth impulse response is created for each predictor by 
randomly sampling parameters for a given impulse response kernel. 
The response is then generated by convolving each predictor with its 
assigned impulse response, sampling the convolved signal at pre-
determined query points (timestamps), scaling the sampled signal by 
the ground-truth coefficients, and summing the scaled sample across 
predictors in order to generate a response vector. In all simulations 
except the noise manipulations, Gaussian noise with standard devia-
tion 10 is added to the generated response vector. In all simulations 
except the time manipulations, time intervals between stimulus 
events and response samples are asynchronous and sampled from an 
exponential distribution with mean 100 ms. For simplicity, all syn-
thetic datasets consist of a single timeseries containing 10,000 
response samples. For all simulations, we provide (1) qualitative as-
sessments of IRF identification by visually comparing true and esti-
mated responses and (2) quantitative assessments of IRF identification 
by computing root mean squared deviation (RMSD) of the estimated 
response from the true response over 1000 timepoints spaced equi-
distantly on the 95th percentile of temporal offsets seen in training. 
For simplicity, only BBVI-estimated responses are shown here. Full 
results are given in Appendix C.1. 

6.2. Simulations 

6.2.1. Simulation A: Noise 
Simulation A explores the sensitivity of CDR estimates to noise in the 

response variable. A single set of 20 independent predictors is sampled 
as described above, and a single set of shifted gamma impulse responses is 
sampled from the following distributions: α ∼ U (1, 6), β ∼ U (0, 5), and 
δ ∼ U ( − 1,0). Gaussian noise with standard deviation 0 (noise free), 1, 

10, and 100 is then injected into the convolved response, and CDR 
models with shifted gamma IRF kernels are fitted separately to each level 
of noise. The true simulated response has a signal power (mean squared 
value) of 1907, and thus the signal to noise ratios of the synthetic 
datasets are respectively ∞, 1907, 19.07, and 0.1907. 

6.2.2. Simulation B: Time 
Simulation B explores the sensitivity of CDR estimates to different 

kinds of time intervals between predictor and response observations. We 
consider three manipulations: (1) fixed vs. variable spacing, (2) long vs. 
short intervals, and (3) synchronous vs. asynchronous measures of 
predictors and response. To evaluate these influences, we construct six 
conditions manipulating the length, variability, and alignment of time 
intervals between consecutive predictors/responses:  

• Fixed synchronous short (FSS): Predictors and response are aligned 
and placed at fixed 100 ms intervals.  

• Fixed synchronous long (FSL): Predictors and response are aligned 
and placed at fixed 500 ms intervals.  

• Random synchronous short (RSS): Predictors and response are 
temporally aligned and intervals are sampled from an exponential 
distribution with mean 100 ms.  

• Random synchronous long (RSL): Predictors and response are 
temporally aligned and intervals are sampled from an exponential 
distribution with mean 500 ms.  

• Random asynchronous short (RAS): Predictors and response are 
not temporally aligned: intervals are sampled independently for 
predictors on the one hand and response on the other from an 
exponential distribution with mean 100 ms.  

• Random asynchronous long (RAL): Predictors and response are 
not temporally aligned: intervals are sampled independently for 
predictors on the one hand and response on the other from an 
exponential distribution with mean 500 ms. 

The data generating model is constructed using the same procedure 
as in Simulation A. 

6.2.3. Simulation C: Multicollinearity 
Simulation C explores the sensitivity of CDR estimates to multi-

collinearity in the predictors. To manipulate multicolinearity in the 
predictors, predictor streams were drawn from multivariate normal 
distributions in which the variance-covariance matrix had a diagonal of 
1 and all off-diagonal elements were set to the desired level of correla-
tion. For example, predictors with correlation level ρ = 0.5 were drawn 
using the following variance-covariance matrix: 

Table 2 
Number of parameters by kernel family and corpus (Simulation D, Natural 
Stories, and Dundee, respectively). Differences between corpora are driven by 
the random effects, since Natural Stories contains many more participants (181) 
than Dundee (10), while Simulation D contains no random effects. Note that 
BBVI and BBVI-improper double these figures by additionally fitting variances 
for each parameter in the variational posterior.   

Parameters 

Kernel SimD NatStor Dundee 

Exponential 42 1970 166 
Normal 62 2686 232 
Gaussian 82 3402 298 
LCG 662 21,845 2080  
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⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0.5 0.5 … 0.5 0.5 0.5
0.5 1 0.5 … 0.5 0.5 0.5
0.5 0.5 1 … 0.5 0.5 0.5
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0.5 0.5 0.5 … 1 0.5 0.5
0.5 0.5 0.5 … 0.5 1 0.5
0.5 0.5 0.5 … 0.5 0.5 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Six sets of predictors were generated in this way, one for each of ρ =
0 (uncorrelated predictors), ρ = 0.25, ρ = 0.5, ρ = 0.75, ρ = 0.9, and ρ =
0.95. The data-generating model was constructed using the same pro-
cedure as in Simulations A and B. 

6.2.4. Simulation D: IRF misspecification 
Simulation D explores the ability of CDR to find reasonable IRF es-

timates in the presence of mismatch between the true and modeled IRF 
kernels. To this end, we construct three data-generating models with 
different underlying response shapes: exponential (E), normal (N), and 
shifted gamma (G). For each of these datasets, we fit CDR models of each 
kernel type, such that two out of three modeled kernels for each dataset 
are not matched to the underlying model (e.g. fitting exponential IRFs to 
the output of a normal data-generating model). The target outcome 
under kernel mismatch is to discover the best available estimate given 
the solution space defined by the modeled kernel. We also explore the 
use of more flexible LCG kernels (described in §5.3), since their solution 
space approximately subsumes all ground truth models used in this 
simulation. As shown in Table 2, the LCG kernel is much more heavily 

parameterized than the others. 
Note that these different kernels have asymmetrical patterns of 

compatibility. For example, the solution space of the shifted gamma kernel 
contains the exponential kernel, since the exponential distribution is a 
special case of the shifted gamma distribution (i.e. when α = 1 and δ =
0).20 The converse does not hold: shifted gamma contains late-peaking 
responses that fall outside the strictly monotonic solution space of the 
exponential kernel. The normal kernel is more flexible than the exponential 
kernel and may therefore be able to better approximate shifted gamma 
responses, but it is additionally constrained by symmetry about the mean. 

The predictors, coefficients, and shifted gamma data-generating 
model are constructed using the same procedure as in Simulations A 
and C. The impulse responses for the exponential data-generating model 
are constructed by sampling β ∼ U (0,5). The impulse responses for the 
normal data-generating model are constructed by sampling 
μ ∼ U ( − 2,2), σ2 ∼ U (0,2). 

6.3. Results and discussion 

Figs. 5 and 6 show that CDR accurately recovers the underlying 
model across all conditions explored here. For brevity, we include only 

Fig. 5. Simulation A (top): Noise. True (left) vs. estimated (center) model under Gaussian noise with standard deviation 10. Simulation B (middle): Time. True 
(left) vs. estimated (center) model under the random asynchronous long (RAL) condition. Simulation C (bottom): Multicollinearity. True (left) vs. estimated (center) 
model under a pairwise correlation level of ρ = 0.9. The twenty IRFs (corresponding to the twenty random covariates) are represented by distinct curves in each plot. 
95% credible intervals are shown. Right: Root mean squared deviation (RMSD) of BBVI-estimated from true models across simulation conditions. Error bars show 
95% Monte Carlo credible intervals. 

20 Because these values lie at the parameter bounds for the shifted gamma 
kernel used here, the model cannot exactly reach them. However, it can come 
arbitrarily close within 32-bit floating point precision. 
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visual comparisons of representative true and BBVI-estimated responses 
across simulations. Full results are given in Appendix C.1. Visually, CDR 
estimates closely resemble the underlying model across conditions. This 
impression is supported quantitatively by low root mean squared devi-
ation (RMSD) of estimated from true curves across conditions: mean 
RMSDs are nearly always within about 0.3, and mostly within 0.2, both 
of which are a small fraction of the maximum absolute peak amplitude 
(~18) in these experiments. Synthetic results therefore indicate that 
CDR can reliably identify the underlying temporal dynamics, even in the 
presence of high levels of noise (Simulation A), asynchronous predictor- 
response alignment (Simulation B), multicollinearity (Simulation C), 
and IRF misspecification (Simulation D). 

Figs. 5 and 6 provide some additional finer-grained insights. For 
example, as expected, RMSDs increase under noisier data or more severe 
multicollinearity (Fig. 5, top and bottom rows). In addition, RMSDs are 
consistently higher in Simulation B when the interval between events is 
short (Fig. 5, middle row), which results from poorer temporal coverage 
of slow response components (Appendix C.1). This outcome underlines 
the importance of selecting a history window with sufficient coverage to 

support identification of all plausible impulse response components. 
Furthermore, results in Fig. 6 indicate that success does not crucially 

rely on foreknowledge of the true impulse response family. Although the 
underlying model has a shifted gamma shape, CDR estimates using 
normal or LCG kernels largely recover its underlying structure. As ex-
pected, there are limits to this generalization. For example, as discussed 
above, exponential kernels cannot discover late-peaking responses, 
resulting in large RMSDs for exponential kernels fitted to data from 
underlyingly normal- or shifted-gamma-shaped models. In addition, the 
high dimensionality of the LCG kernels makes them more prone to find 
wiggly estimates, leading to higher overall RMSD. 

This simulation study shows that CDR consistently finds solutions 
near the global optimum across a range of inference methods, simulation 
types, and adverse training conditions. Thus, despite the theoretical 
vulnerability to local optima due to non-convex optimization (§4.6), 
simulation results (1) suggest that such potential problems often have 
little practical impact and therefore (2) support the use of CDR modeling 
to test scientific hypotheses. 

Fig. 6. Simulation D: IRF Misspecification. True shifted gamma model (top) vs. models estimated from four different parametric families. The twenty IRFs (cor-
responding to the twenty random covariates) are represented by distinct curves in each plot. 95% credible intervals are shown. Bottom: Root mean squared deviation 
(RMSD) of BBVI-estimated from true models across simulation conditions — exponential (E), normal (N), shifted gamma (G), and linear combination of Gaussians 
(LCG) kernels applied to true exponential, normal, and shifted gamma responses. Error bars show 95% Monte Carlo credible intervals. 
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7. Experiment A: Naturalistic reading 

We now apply CDR to discover effect timecourses in human reading 
behavior from two large naturalistic datasets. As argued in §2, analyzing 
naturalistic reading is a key application area of interest, both because (1) 
diffusion of effects may be especially pronounced in the naturalistic 
reading paradigm and (2) existing tools like FIR/spillover models have a 
number of shortcomings when applied to this domain (see §3). Our 
analyses are inspired by those reported in Shain (2019) but focus pri-
marily on the validation of CDR rather than on an empirical claim about 
human sentence processing. To this end, much like in the simulation 
studies reported in §6, we apply multiple estimation techniques and 
impulse response kernels to each corpus. 

The primary interest of CDR as an explanatory model is that it yields 
detailed estimates of diffuse temporal structure that existing discrete- 
time regression techniques cannot provide. However, unlike the simu-
lations above, the data-generating model for human reading responses is 
unknown, and its temporal structure is currently poorly understood. 
Thus, direct comparison to the ground truth is not available for model 
validation on human data; indeed, a potential benefit of CDR modeling 
is its ability to shed light on this important question. For this benefit to 
be realized, it is first necessary to establish that CDR provides a “good” 
model of human responses according to some standard; otherwise, its 
estimates should not be trusted. In this study, we propose that such a 
standard can be constructed using the predictive performance of 
established statistical methods. If CDR models generalize less well to 
unseen data than standard models, then their estimates of temporal 
structure should be treated with skepticism. However, if CDR pre-
dictions perform competitively with those of standard models, then this 
indicates that the model has tapped into generalizable properties of the 
response. In this study, we compare the predictive performance of CDR 
to that of linear mixed effects (LME) and generalized additive (GAM) 
models, both of which have been used extensively in psycholinguistics. 
In doing so, we stress that the primary advantage of CDR lies in its ability 
to estimate continuous diffusion over time, with performance compar-
isons serving as a sanity check. Below, we show that CDR predictive 
performance is competitive with that of all baselines in each dataset and 
superior to all baselines overall, supporting the reliability of its estimates 
of temporal structure. In addition, we show that CDR performance is 
stable across a range of estimation methods and IRF kernels. 

7.1. Data 

This reading study uses the Natural Stories (Futrell et al., 2021) and 
Dundee (Kennedy, Pynte, & Hill, 2003) datasets.21 Natural Stories is a 
self-paced reading (SPR) corpus consisting of context-rich narratives 

read by 181 subjects. Stimuli are designed to resemble naturally- 
occurring texts while increasing the representation of rare words and 
syntactic constructions. Subjects paged through the stories on a com-
puter screen, pressing a button to reveal the next word. The amount of 
time spent on each word was recorded as the response variable. The 
corpus contains a total 1,013,290 events (where one event is a single 
subject viewing a single word token).22 

Dundee is an eye-tracking corpus containing newspaper editorials 
read by 10 subjects. The corpus contains a total of 340,840 events 
(where one event is a single subject entering and then exiting a single 
word region).23 

In both reading experiments, data are partitioned into training 
(50%), exploratory (25%) and test (25%) sets. The partitioning strategy 
attempts to respect the non-independence of words within the same 
sentence, using modular arithmetic to cycle sentence IDs e into different 
bins of the partition with a different phase for each subject u: partition(e, 
u) = (e + u) mod 4, assigning outputs 0 and 1 to the training set, 2 to the 
exploratory set, and 3 to the test set. Outlier filtering is also performed, 
largely following the procedures described in Shain and Schuler 
(2018).24 Because CDR’s convolution operation is only correct if applied 
to all preceding events within the history window, partitioning and 
filtering are applied only to the response, retaining all events in the 
predictor matrix.25 

7.2. Experimental setup 

The purpose of Experiment A is to evaluate CDR as a statistical model 

21 Although we have previously reported deconvolutional results (Shain, 
2019; Shain & Schuler, 2018) on the UCL eye-tracking corpus (Frank, Mon-
salve, Thompson, & Vigliocco, 2013a), we have chosen not to include UCL in 
the current study because we believe it is not a reliable test case for deconvo-
lutional modeling. While Natural Stories and Dundee contain long texts, UCL 
contains randomized sentences presented in isolation. Since the public version 
of UCL provides no information about inter-stimulus intervals, the only way to 
run CDR on UCL is to treat each sentence as a distinct time series, which results 
in insufficient amounts of elapsed time between impulses and responses to 
reliably identify IRFs. In the case of Natural Stories and Dundee, the 95th 
percentile of temporal offsets seen in training is 123s and 93s, respectively, 
while in UCL (treating sentences as independent time series) it is less than 2s. In 
general, data consisting of isolated sentences (a frequent stimulus design in 
psycholinguistics) are perfectly compatible with CDR modeling as long as the 
recording session (rather than the sentence) is treated as a time series and inter- 
stimulus intervals are considered when computing event timestamps. An 
enriched version of the UCL data that contains inter-stimulus intervals would 
thus permit deconvolution by allowing timestamps to be accurately computed 
over the full recording session. We leave this possibility to future work. 

22 This figure differs from the published count in Futrell et al. (2021) because 
we do not filter events from the stimulus sequence, since they are needed for 
accurate deconvolution.  
23 A limitation of the Dundee corpus is the number of participants (10). 

Although each of these participants is quite densely sampled and should 
therefore be able to be reliably modeled, the small number of participants may 
limit the degree to which results based on Dundee can be expected to generalize 
to the population as whole. While we acknowledge this concern, the purpose of 
the present study is not to test hypothesized effects in human sentence pro-
cessing, but rather to evaluate the empirical properties of a new modeling 
approach (CDR). Dundee is one of the most extensively analyzed naturalistic 
eye-tracking corpora in psycholinguistics (e.g. Demberg & Keller, 2008; Frank 
& Bod, 2011; Fossum & Levy, 2012; Smith & Levy, 2013; van Schijndel & 
Schuler, 2015; Goodkind & Bicknell, 2018, inter alia) and therefore serves as a 
“standard” dataset for initial evaluation of CDR for eye-tracking. CDR analysis 
of eye-tracking corpora with larger numbers of participants (e.g. Cop, Dirix, 
Drieghe, & Duyck, 2017) is left to future work.  
24 For Natural Stories, following Shain et al. (2016), items were excluded if 

they have fixations shorter than 100 ms or longer than 3000 ms, if they start or 
end a sentence, or if subjects missed 4 or more subsequent comprehension 
questions. We additionally removed any subjects with fewer than 100 data-
points after application of the other filters, both because such subjects are likely 
uncooperative (missing excessive comprehension questions or paging too 
rapidly through the text) and because their data are likely insufficient to sup-
port estimation of random effects. For Dundee, following van Schijndel and 
Schuler (2015), unfixated items were excluded as well as (1) items following 
saccades longer than 4 words and (2) starts and ends of sentences, screens, 
documents, and lines. In addition, following common practice in psycholin-
guistics, we removed items whose duration included a blink (e.g. Schotter, 
Leinenger, & von der Malsburg, 2018). Most of these outlier filters are designed 
to minimize the influence of boundary effects like implicit prosody (Breen, 
2014). Differences across corpora in exclusion criteria are driven by a combi-
nation of (1) differences in precedent established by studies that use these 
corpora (see citations), (2) differences in modality, since e.g. unfixated items 
and long saccades are only relevant to eye-tracking, and (3) differences in 
source data, since e.g. only Dundee provides information about screen, docu-
ment, and line boundaries.  
25 In these experiments, an entire document is treated as a time series, with the 

result that words can continue to influence the response across sentence 
boundaries. 
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of human reading. To this end, all analyses share the following design 
features. 

7.2.1. Response variable 
In all experiments, the response variable of interest is reading la-

tency, under the eye-mind assumption (Just & Carpenter, 1980) that 
longer latencies index greater processing difficulty. The definition of 
latency varies by experimental modality. For self-paced reading data 
(Natural Stories), reading latency is defined as reaction time — the in-
terval between button presses. For eye-tracking data (Dundee), a num-
ber of latency measures are possible (Rayner, 1998). In this study, we 
focus on scan path duration, defined as the time elapsed between 
entering a word region (from either direction) and entering a different 
word region (in either direction). Under the assumption that word fea-
tures (e.g. frequency and surprisal) do not accumulate in influence from 
consecutive saccades to the same word, we sum over all consecutive 
saccades to the same word region. Compared to other commonly-used 
duration measures (e.g. first pass and go-past durations), scan path 
durations follow the temporal sequence of eye movements rather than 
the spatial sequence of words on the screen (these two sequences can 
differ due to regressive — backward — eye movements). Appendix C.2 
contains additional, and generally consistent, results from applying CDR 
to first pass and go-past durations in Dundee.26 In all cases, latency is 
measured in milliseconds. Because of the non-normal distribution of 
reading times in psycholinguistic experiments (e.g. Frank, Monsalve, 
Thompson, & Vigliocco, 2013b), we also consider log-transformed var-
iants of reading time durations, following e.g. Smith and Levy (2011).27 

7.2.2. Predictor variables 
Models use the following predictors: sentence position (index of word 

in sentence), document position (index of word in document), incoming 
saccade length (in words, eye-tracking only), previous was fixated (indi-
cator for whether the preceding word was fixated, eye-tracking only), 
word length (in characters), unigram surprisal,28 and 5-gram sur-
prisal.29Unigram surprisal and 5-gram surprisal are computed by the 
KenLM toolkit (Heafield, Pouzyrevsky, Clark, & Koehn, 2013) trained on 
Gigaword 3 (Graff, Kong, Chen, & Maeda, 2007). Examples of studies 
using some or all of these predictors include Demberg and Keller (2008); 
Frank and Bod (2011); Smith and Levy (2013) and Baayen et al. (2018). 
Models also include a deconvolutional intercept, referred to as rate, 
which is designed to capture any generalized response to stimuli, 
independently of their properties (§4.3). We exclude rate from all non- 
CDR baseline models reported below because it is identical to the 
intercept, and thus these baselines are unable to identify rate effects. 

Models include a rich random effects structure to capture variation 
between individuals, with by-subject random intercepts, slopes, and IRF 
parameters.30 By-word random intercepts, though common in 

psycholinguistic studies (Demberg & Keller, 2008), are avoided because 
(1) they can absorb context-independent effects like word length and 
unigram log probability and (2) early experiments suggest that by-word 
intercepts lead to overfitting (based on exploratory set performance) 
in both CDR and baseline models. All predictors are rescaled by their 
standard deviations prior to fitting.31 

Prior work suggests the following a priori expectations about the 
effect estimates for these predictors. Saccade length, word length, and 5- 
gram surprisal are expected to increase processing difficulty (Demberg & 
Keller, 2008). According to several preceding studies, unigram surprisal 
should also positively modulate processing difficulty (see Staub, 2015, 
for review), although this pattern has recently been called into question 
(Shain, 2019). Previous was fixated has been shown to have a facilitation 
effect (van Schijndel & Schuler, 2015). Sentence position and document 
position are designed to capture trends in the response over different 
timescales (sentences and documents). Previous work indicates that 
reading times decrease over the course of experiments (Baayen et al., 
2017), suggesting an expected negative effect of document position. 
Previous estimates for sentence position have been small-magnitude and 
negative (Demberg & Keller, 2008; van Schijndel & Schuler, 2015). Rate 
effects in reading data have not been carefully studied, in part for lack of 
CDR (though see Shain & Schuler, 2018). 

The predictors saccade length, word length, unigram surprisal, and 5-gram 
surprisal are all motor, perceptual, or linguistic variables to which the 
sentence processing system has been shown to respond upon word fixation 
(Demberg & Keller, 2008) and to which the response might not be 
perfectly instantaneous. To the extent that temporally diffuse responses to 
any of these predictors exist, it is desirable that the model be able to 
capture them. By contrast, document position and sentence position merely 
index progress through documents and sentences respectively. They are 
not perceptual or linguistic properties of the experiment, and it is unclear 
how any diffuse impulse response attributed to them would be interpreted. 
Following prior work (Baayen et al., 2018; Demberg & Keller, 2008), their 
presence in the model is motivated by the possibility of trends in the 
response. For this reason, parametric IRFs are fitted to all predictors except 
document position and sentence position, which are assigned a (parameter- 
free) Dirac delta IRF (i.e. a linear coefficient). Document position and sen-
tence position are thus omitted from IRF plots. Because the functional 
family of the underlying response is unknown, we explore the impact of 
the modeled response kernel by fitting exponential (E), normal (N), shifted 
gamma (G), and pseudo non-parametric linear combination of Gaussians 
(LCG) kernels with default initializations (§5.1), as in Simulation D (§6). 

Because we are analyzing scan path durations in Dundee (which 
contain regressive fixations), it is plausible that the variables of interest 
exert different influences in the scan path record depending on whether 
they belong to a word that is being fixated for the first time vs. a word 
that is being re-fixated or fixated as part of a regression. This is espe-
cially true of e.g. surprisal — presumably a surprising word is less sur-
prising after it has already been observed. While there are many 
conceivable ways of accounting for the possibility of such interactions in 
the model design, in the interests of parsimony we opted for a simple 
approach of splitting each variable into two predictors, one corre-
sponding to fixations that are part of a regressive eye movement, and 
one corresponding to fixations that are not. These two variants thus 
partition the variable among the fixations. For example, the single 
vector of surprisal values by fixation is split into two vectors, one con-
taining only those values that are associated with regressive fixations, 
and one containing only those values that are associated with non- 
regressive fixations, with zeros elsewhere. In all results, we distinguish 
regressive estimates with “(+reg)”. In addition, we include an indicator 
variable for notregression, to account for any generalized difference in 
response profile for regressive vs. non-regressive fixations. 

26 The question of how to define events and measures in the reading record 
(scan path, first pass, go-past, regression probability, etc.) is orthogonal to the 
question of how to analyze the data (LME, GAM, CDR): as shown in our full 
ensemble of Dundee results (here and in Appendix C.2), comparable discrete- 
time LME/GAM models with spillover can also be constructed for each 
response definition, including scan paths.  
27 Appendix C.2 additionally reports on results using an alternative non- 

normal error distribution (sinh-arcsinh) for estimating IRFs from reading data.  
28 We represent unigrams on a surprisal scale (negative log probability) simply 

to facilitate comparison with 5-gram effects, but recognize that they are a 
degenerate (memory-less) model of surprisal and are usually included in psy-
cholinguistic models to capture lexical retrieval rather than prediction effects 
(Shain, 2019; Staub, 2015).  
29 All surprisals used in this study are fully lexicalized in that the support of 

their underlying probability models is (a subset of) the vocabulary of English, 
rather than syntactic abstractions like parts of speech.  
30 See Appendix A.1 for mixed model equations and Appendix D for an 

empirical analysis of random effects in CDR. 

31 Except rate, which has no variance and therefore cannot be scaled by its 
standard deviation of 0. 
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7.2.3. Model comparison 
To establish a standard of comparison for evaluating predictive 

performance, we also fit baseline LME and GAM models. Because the 
purpose of CDR is scientific modeling rather than engineering, the pri-
mary results of interest are the IRFs themselves and the insights they 
provide into human sentence processing. Therefore, the baseline models 
are used to construct a standard of reliability in predictive performance 
for each dataset, and comparison to them is intended to validate the CDR 
estimates. If CDR performs comparably to or better than baseline models 
in terms of generalization error, then this serves as evidence that the 
detailed estimates of temporal dynamics provided by CDR reliably 
characterize the response variable of interest. Both baseline types (LME 
and GAM) are fitted with and without three preceding spillover posi-
tions for each predictor (baselines with spillover are designated 
throughout this paper with the suffix -S), since a fourth-order FIR filter 
(spillover 0 through 3) is among the longest filters attested in previous 
naturalistic reading experiments (e.g. Smith & Levy, 2013). 

We compare to GAM models because of their established usage in 

psycholinguistic data analysis. However, we acknowledge that CDR and 
GAM are designed to address different limitations of linear models. CDR 
addresses the possible existence of continuous temporal diffusion of ef-
fects in non-uniform time series, while GAM does not. GAM addresses the 
possible existence of arbitrary smooth non-linear functional relationships 
between predictors and response, while CDR (as currently defined) does 
not. The relative performance of CDR vs. GAM may therefore vary by 
dataset according to the relative importance of temporal diffusion vs. 
non-linear effects in describing the underlying response function. 
Extension of CDR to directly estimate non-linear response functions is left 
to future work, though see §2 for elaboration on a proposal to combine 
CDR and GAM models in a two-step regression framework. 

In summary, the principal advantage of CDR for scientific modeling 
is the fact that it produces high-resolution estimates of temporal diffu-
sion that cannot be obtained using established techniques like LME or 
GAM. The fact that CDR additionally outperforms those other tech-
niques in terms of overall generalization error (see Table 5 below) pri-
marily supports the reliability of the model’s estimates. 

Fig. 7. BBVI-estimated IRFs by kernel for Natural Stories (top) and Dundee (bottom).  

Table 3 
Natural Stories. CDR vs. baselines, mean-squared error. CDR results shown using (E)xponential, (N)ormal, Shifted (G)amma, and non-parametric LCG response 
kernels, fitted using MLE, BBVI improper, and BBVI. Best-performing models within the sets of baseline and CDR models are shown in italics. Best-performing overall 
models are shown in bold. Daggers (†) indicate convergence failures.   

Natural Stories (ms) Natural Stories (log-ms) 

Model Train Expl Test Train Expl Test 

LME 20,179 20,624 20,369 0.0803 0.0818 0.0815 
LME-S 19,980† 20,471† 20,230† 0.0789† 0.0807† 0.0803†

GAM 20,070 20,501 20,255 0.0798 0.0814 0.0810 
GAM-S 19,873 20,349 20,109 0.0784 0.0802 0.0799 

CDR-E-MLE 17,766 18,172 – 0.0630 0.0643 – 
CDR-E-BBVI.imp 17,765 18,168 – 0.0630 0.0643 – 
CDR-E-BBVI 18,106 18,361 – 0.0644 0.0651 – 
CDR-N-MLE 17,487 18,060 – 0.0622 0.0641 – 
CDR-N-BBVI.imp 17,500 18,058 – 0.0622 0.0640 – 
CDR-N-BBVI 17,686 18,182 – 0.0630 0.0645 – 
CDR-G-MLE 17,510 18,053 – 0.0620 0.0656 – 
CDR-G-BBVI.imp 17,551 18,045 – 0.0623 0.0643 – 
CDR-G-BBVI 18,118 18,373 18,212 0.0646 0.0652 0.0654 
CDR-LCG-MLE 16,222 18,785 – 0.0569 0.0657 – 
CDR-LCG-BBVI.imp 16,153 18,770 – 0.0567 0.0659 – 
CDR-LCG-BBVI 17,437 17,805 – 0.0613 0.0627 –  
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7.3. Results 

Fig. 7 shows IRF estimates for Natural Stories (top) and Dundee 
(bottom). For brevity, we only present the BBVI estimates using un-
transformed durations, and we focus our discussion of Dundee on non- 
regressive estimates unless stated otherwise. The full set of estimates 
using all inference types and error transforms is given in Appendix C.2. 
In general, they are similar to the estimates presented here. Rate obtains 
a large-magnitude, negative, and slowly decaying IRF across datasets 
and kernel families. This is consistent with the existence of an inertia 
effect, such that quicker reading in the recent past tends to engender 
quicker reading at the current word as well. This effect is especially 
pronounced in Natural Stories, where the rate estimate is many times 
larger in magnitude than that of any other predictor, suggesting that 
self-paced reading may be particularly susceptible to influences from 
inertia (i.e. habituation to repeated button presses). Nevertheless, other 
predictors are also estimated to influence reading latencies over and 
above rate. Word length and 5-gram surprisal are given positive estimates, 
consistent with prior expectations of processing costs associated with 
each of these variables. IRFs in Dundee decay more quickly than those in 
Natural Stories, suggesting a less pronounced influence of temporal 
diffusion in the eye-tracking modality compared to the self-paced 
reading modality. This suggestion is further supported by a much 
stronger improvement in predictive performance from using CDR for 
Natural Stories than Dundee (see Tables 3 and 4). Within the Dundee 
estimates, IRFs for word length generally decay more quickly than those 
for 5-gram surprisal or unigram surprisal (in models like LCG that find a 
non-zero unigram surprisal effect), which is consistent with the hypoth-
esis that higher-level predictive coding and/or lexical retrieval processes 
entail more computation and therefore engender a slower response than 
a low-level perceptual variable like word length (Shain & Schuler, 2018). 
This pattern does not seem to obtain in Natural Stories, suggesting an 
influence of modality on comprehension patterns. Estimates for unigram 
surprisal in both corpora are mostly negative or null, consistent with 
results reported in Shain (2019). Dundee models also generally find a 
large-magnitude, negative, rapidly decaying IRF for previous was fixated, 
suggesting a strong but brief facilitation effect for single-word saccades, 
perhaps due to parafovial processing from the preceding word. Dundee 
results also indicate that there are indeed substantially different esti-
mates for variables depending the [±regression] dimension: all effects 
are attenuated under a regressive eye-movement. 

As in the synthetic experiments reported in §6.3, the LCG estimates 

show wiggly dynamics but generally recapitulate the overall shape trends 
that emerge using parametric kernels. LCG models also generally do not 
achieve much better generalization error than parametric models, 
although improvements to training fit are sometimes quite large (Ta-
bles 3 and 4). These findings suggest that the simpler parameteric kernels 
(1) are not too constraining to find near-optimal response shapes and (2) 
are less prone to overfitting than the pseudo-non-parametric kernels. 

The models generally find exponential-like kernel shapes across data-
sets and kernel families. This suggests that the effects of these variables on 
reading behavior are mostly monotonic — the properties of a word exert 
the biggest influence on fixations to that word, with diminishing influence 
on fixations to subsequent words. While this has often been assumed in 
reading research (e.g. Rayner, 1998), here it is an emergent finding. Two 
key exceptions occur in the Natural Stories estimates, where word length is 
given a large late-peaking estimate under the normal kernel and the rate 
response is initially strongly positive and quickly dips strongly negative 
under the LCG kernel. The late-peaking word length possibly merits further 
investigation, although several considerations cast suspicion on it. First, 
word length is generally considered to be a low-level effect of visual word 
recognition and is thus not expected to have a late effect a priori. Second, 
many implementationally similar CDR models do not recover the same 
response profile for word length (see Appendix C.2). Third, the model that 
found this particular effect shape for word length does not achieve sys-
tematically better generalization performance over those that did not 
(Table 3). That particular response component is thus plausibly an artifact, 
although follow-up study may be warranted. The initial positivity in the 
LCG estimate for rate is likely explained by two facts: (1) the rate estimate 
at time 0 is confounded with the model intercept, and (2) fixations shorter 
than 100 ms (approximately the length of the positivity) are filtered out by 
standard preprocessing in Natural Stories. There is thus little training 
signal for the IRF shape over the interval 0–100 ms, and the more flexible 
LCG kernel is capable of finding spurious estimates there. 

In summary, the IRFs recovered by CDR accord with prior expecta-
tions about the reading response and are largely consistent across mo-
dalities and kernel definitions, while shedding additional light on fine- 
grained details of temporal structure. 

To validate the CDR estimates, comparisons to baseline LME and 
GAM models are presented in Tables 3 and 4. LME-S performance 
metrics could not be obtained for Dundee scan paths because the fitting 
time exceeded the two week runtime allocation provided by our 
compute resource. CDR models outperform (i.e. achieve better explor-
atory and — where relevant — test set error than) all baselines on 

Table 4 
Dundee (scan path). CDR vs. baselines, mean-squared error. CDR results shown using (E)xponential, (N)ormal, Shifted (G)amma, and non-parametric LCG response 
kernels, fitted using MLE, BBVI improper, and BBVI. Best-performing models within the sets of baseline and CDR models are shown in italics. Best-performing overall 
models are shown in bold. Daggers (†) indicate convergence failures. LME-S performance metrics could not be obtained for scan paths because of long runtimes 
required for training.   

Dundee (ms) Dundee (log-ms) 

Model Train Expl Test Train Expl Test 

LME 14,645† 15,215† 15,230† 0.1790† 0.1807† 0.1801†

LME-S – – – – – – 
GAM 14,476 15,055 15,064 0.1779 0.1795 0.1791 
GAM-S 14,340 14,942 14,973 0.1757 0.1776 0.1773 

CDR-E-MLE 14,510 15,055 – 0.1769 0.1784 – 
CDR-E-BBVI.imp 14,508 15,055 – 0.1769 0.1784 – 
CDR-E-BBVI 14,573 15,107 – 0.1775 0.1788 – 
CDR-N-MLE 14,493 15,055 – 0.1765 0.1783 – 
CDR-N-BBVI.imp 14,501 15,069 – 0.1764 0.1782 – 
CDR-N-BBVI 14,545 15,081 – 0.1775 0.1788 – 
CDR-G-MLE 14,501 15,063 – 0.1767 0.1785 – 
CDR-G-BBVI.imp 14,508 15,058 – 0.1766 0.1784 – 
CDR-G-BBVI 14,574 15,104 15,171 0.1776 0.1789 0.1789 
CDR-LCG-MLE 14,109 15,204 – 0.1711 0.1810 – 
CDR-LCG-BBVI.imp 14,083 15,283 – 0.1711 0.1806 – 
CDR-LCG-BBVI 18,295 18,675 – 0.1779 0.1792 –  
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Natural Stories, and they generally outperform the LME-based models 
on Dundee.32 GAM without spillover mostly outperforms CDR on Dun-
dee without log transformation and mostly underperforms CDR with log 
transformation, although the errors are similar in magnitude 
throughout. GAM with spillover systematically outperforms CDR in 
Dundee, though again the errors are relatively close, especially under 
log transformation. The limited performance of CDR on Dundee relative 
to GAM with spillover is likely due to some combination of (1) the 
relatively constrained degree of temporal diffusion in Dundee, as 
revealed by the rapidly decaying response estimates in the bottom 
panels of Fig. 7,33 (2) the requirement of CDR to generate responses 
through linear combination of the convolved predictors, while GAM 
estimates non-linear relationships between predictors and response, and 
(3) the greater concision of CDR models, which contain substantially 
fewer parameters than GAM models with spillover (GAM fits multidi-
mensional smooth functions for each spillover position of each predic-
tor, in addition to the random effects model). Nonetheless, the ensemble 
of exploratory set comparisons support the reliability of CDR estimates, 
since they yield similar or improved generalization performance across 
the board. 

We statistically evaluate CDR against the baseline models in two 
ways: (1) by comparing test-set performance against each baseline 
and (2) by comparing overall success rates of CDR models against each 
baseline on the training and exploratory sets. For (1), to avoid mul-
tiple comparisons, we select only CDR-G-BBVI as the representative 
CDR model across reading datasets and compare its generalization 
performance on the test set to that of all baseline models.34 We use a 
paired permutation test (Demšar, 2006) with 10,000 resampling it-
erations, pooling error vectors from all tasks (both linear and log 
responses from both Natural Stories and Dundee) into a single com-
parison.35 For (2), we test the empirical probability of a CDR model 
outperforming each baseline model on the training or exploratory 

set36 (a success) against a null hypothesis of chance probability (0.5), 
using a binomial test. This test assesses the general robustness of CDR 
compared to the baselines, aggregating over CDR hyperparameters by 
testing whether the probability of improvement from using an arbi-
trarily chosen CDR model type differs from chance. Results are given 
in Table 5. As shown, CDR-G-BBVI significantly outperforms all 
baselines in terms of test-set error, indicating that CDR models ach-
ieve better overall out-of-sample error than any of the baselines. In 
addition, the CDR success rate over all baselines but GAM-S is 
significantly greater than chance, indicating that an arbitrarily chosen 
CDR configuration is likely to outperform these baselines, even 
without careful tuning on an exploratory set.37 

7.4. Discussion 

Our application of CDR to the study of human reading latencies 
shows consistent estimates across response kernels that largely align 
with prior expectations but additionally provide high-resolution insights 
into underlying temporal dynamics that are difficult to obtain using 
standard statistical models. Results additionally show a significant 
overall improvement in generalization error from CDR over baseline 
models, supporting the trustworthiness of estimated response functions. 

8. Experiment B: Naturalistic fMRI 

We now use CDR to infer the shape of the hemodynamic response 
function (HRF) from fMRI measures of brain responses to variably- 
spaced naturalistic stimuli. There is already an extensive literature on 
HRF discovery using discrete-time deconvolutional methods (Josephs, 
Turner, & Friston, 1997; Friston et al., 1998; Miezin et al., 2000; 
Gitelman, Penny, Ashburner, & Friston, 2003; Lindquist et al., 2009; 
Pedregosa, Eickenberg, Ciuciu, Gramfort, & Thirion, 2014, inter alia). 
These approaches rely on stimulus designs in which events are regularly 
spaced and aligned with the fMRI scan times. For fMRI researchers 
seeking the benefits to ecological validity afforded by the naturalistic 
experimental paradigm (Campbell & Tyler, 2018; Hasson, Egidi, Mar-
elli, & Willems, 2018; Hasson & Honey, 2012; Hasson, Malach, & 
Heeger, 2010), this requirement poses a problem, since many natural-
istic stimuli (including language) do not consist of regularly spaced 
events occurring at integer multiples of the fMRI scanner’s acquisition 
rate. Naturalistic fMRI experiments are therefore an important target 
application of continuous-time deconvolution, since CDR imposes no 
such requirement on the stimulus design. Here we evaluate CDR models 
trained on a naturalistic fMRI dataset and compare their performance to 
that of existing methods for modeling fMRI measures of neural responses 
to naturalistic language stimuli. 

8.1. Data 

We use the same fMRI dataset as Shain, Blank, van Schijndel, 

Table 5 
Reading data model comparison (Dundee scan path). Permutation tests of 
improvement on test set from CDR-G-BBVI over baselines (pooled across all 
tasks), along with binomial tests of the probability of CDR models improving 
over each baseline, aggregating over training and exploratory sets (those on 
which all CDR models are evaluated). Note: Dundee scan path durations are 
excluded from the LME-S comparison because runtime limits prevented training 
from terminating.   

Permutation test Binomial test 

Baseline p Success rate p 

LME 1.0e-4*** 0.96 2.2e-16*** 
LME-S 1.0e-4*** 1.0 2.2e-16*** 
GAM 1.0e-4*** 0.74 1.4e-6*** 
GAM-S 1.0e-4*** 0.54 0.24  

32 Although we were unable to achieve convergence in the more expressive 
LME-S baseline, comparisons using first pass and go-past durations in Dundee 
(Appendix C.2) show that it systematically underperforms CDR.  
33 This outcome nevertheless highlights an advantage of CDR: it can discover 

the extent of temporal diffusion empirically, which can be of scientific interest 
even in datasets where the latent processes are not very diffuse and do no afford 
large gains in fit from CDR modeling.  
34 The choice of BBVI for this analysis was motivated in §5.3. Of the BBVI 

models, we focus on shifted gamma because it is the most flexible of the para-
metric kernels and therefore likely to be of interest to future applications of 
CDR to reading times. Differences in generalization performance between 
kernels tend to be small.  
35 To ensure comparability across corpora with different error variances, per- 

datum errors are first scaled by their standard deviations within each corpus. 
Standard deviations are computed over the joint set of error values in each pair 
of CDR and baseline models. 

36 I.e., those sets for which performance data are available for all models.  
37 As shown in Appendix C, the reported pattern of permutation testing results 

is unchanged whether first pass, go-past, or scan path durations in Dundee are 
used, or indeed whether all Dundee durations are considered simultaneously, 
despite the fact that this greatly overrepresents Dundee, where the relative 
performance of CDR is considerably worse than in Natural Stories. Binomial 
tests using the other duration types in Dundee (first pass and go-past) are sig-
nificant even over GAM-S, though the success rates are lower than against the 
other baselines. This again suggests that the relative importance of controlling 
for temporal diffusion (CDR) vs. non-linear effects (GAM) may be less great in 
the Dundee corpus, where diffusion appears to be relatively constrained. 
Nonetheless, a major advantage of the CDR approach is its ability to estimate 
the extent of diffusion in general, and thus to reveal circumstances in which 
diffusion plays a more or less pronounced role. 
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Schuler, and Fedorenko (2020).38 Data were collected from 78 partici-
pants (30 males) exposed to auditory presentation of texts from the 
Natural Stories corpus (Futrell et al., 2021) read by one of two speakers 
(1 male, 1 female). Left-hemisphere fronto-temporal language regions 
are functionally localized on a participant-specific basis using a separate 
localizer task (Fedorenko, Hsieh, Nieto-Castañón, Whitfield-Gabrieli, & 
Kanwisher, 2010; Braze et al., 2011; Vagharchakian, Dehaene- 
Lambertz, Pallier, & Dehaene, 2012; Blank, Balewski, Mahowald, & 
Fedorenko, 2016; Scott, Gallée, & Fedorenko, 2017, inter alia). The 
response variable consists of average blood oxygen level dependent 
(BOLD) contrast imaging signal within the voxels of six functionally 
defined regions of interest (fROIs) constituting the left-hemisphere 
fronto-temporal language network: inferior frontal gyrus (IFG) and its 
orbital part (IFGorb), middle frontal gyrus (MFG), anterior temporal 
cortex (ATL), posterior temporal cortex (PTL), and angular gyrus 
(AngG). For full details of the fMRI data acquisition, preprocessing, and 
functional localization methods, see Shain, Blank et al (2020). 

Similarly to Experiment A, training (50%), exploratory (25%), and 
test (25%) sets are created using modular arithmetic. Following Shain, 
Blank et al (2020), we use a slower partitioning cycle (15 TRs or 30s) 
compared to Experiment A, which is motivated by a desire to reduce 
correlation between the elements of the partition in light of strong prior 
evidence that the BOLD signal is highly auto-correlated. In particular, 
we cycle TR numbers e into different bins of the partition with a different 
phase for each subject u: partition(e, u) = ⌊e+u⌋

15 mod 4, again assigning 
outputs 0 and 1 to the training set, 2 to the exploratory set, and 3 to the 
evaluation (test) set. 

8.2. Predictor and response variables 

Following Shain, Blank et al (2020), the dependent variable is 
average BOLD response within each fROI, with all fROIs combined into a 
single model. Unlike reading latencies, BOLD measurements are not 
strictly positive and generally not heavily skewed. Therefore, in contrast 
to the reading experiments above, we do not explore any normalizing (e. 
g. logarithmic) transformations on the fMRI response. In addition to rate, 
unigram surprisal, and 5-gram surprisal, all implemented identically to 
Experiment A, we also include a predictor for sound power (e.g. Brennan 
et al., 2016), estimated as frame-by-frame root mean squared energy 
(RMSE) of the audio stimuli computed using the Librosa software library 
(McFee et al., 2015). Because sound power is a continuous rather than 
event-based predictor, we implement it by taking regular RMSE samples 
every 100 ms. Sound power thus uses RMSE sample times as timestamps 
rather than word onsets, and CDR’s event-based deconvolutional pro-
cedure thus implicitly uses a Riemann sum approximation of the 
continuous sound power convolution integral. To implement the 
assumption of a fixed-shape hemodynamic response in a given cortical 
region, we tie the parameters of the IRF kernel across all predictors 
within each region, while giving each predictor its own coefficient in 
order to estimate different response amplitudes. We also add a linear 
predictor for repetition time number (TR number, the sample’s index 
within the current story), designed to capture any linear trends in the 
overall response. Models contain by-fROI random intercepts, slopes, and 
HRF parameters for each of these predictors, along with by-subject 
random intercepts.39 

8.3. Hemodynamic response kernels 

We consider IRF kernels based on the double-gamma hemodynamic 
response function (Boynton et al., 1996): 

f (x; α1, β1, c, α2, β2) =
βα1

1 xα1 − 1e− β1x

Γ(α1)
− c

βα2
2 xα2 − 1e− β2x

Γ(α2)
(33) 

The normalization constant for this kernel is simply 1
1− c, since it 

consists of a sum of two scaled gamma probability densities whose in-
tegrals over the positive reals are 1 and − c, respectively. We therefore 
define a 5-parameter HRF5 kernel as: 

HRF5(x; α1, β1, c, α2, β2)=
deff (x; α1, β1, c,α2, β2) / (1 − c) (34) 

Because the double-gamma HRF is fairly heavily parameterized (5 
parameters), we explore the impact of reparameterizations that reduce 
the flexibility of the kernel through parameter tying, constraining the 
kernel toward the canonical HRF, where α1 = 6, β1 = 1, c = 1

6, α2 = 16, 
and β2 = 1 (Lindquist et al., 2009). Thus, in addition to the 5-parameter 
kernel shown in Eq. (34) (HRF5), we also consider the following kernel 
variants:  

• A 4-parameter variant (HRF4) with tied rate parameter β: 

HRF4(x; α1, β, c, α2)=
def
(

βα1 xα1 − 1e− βx

Γ(α1)
− c

βα2 xα2 − 1e− βx

Γ(α2)

) /

(1 − c) (35)    

• A 3-parameter variant (HRF3) which additionally ties the shape 
parameters α1 and α2 to have a constant offset of 10, as used by SPM’s 
canonical HRF: 

HRF3(x; α, β, c)=def
(

βαxα− 1e− βx

Γ(α) − c
βα+10xα+9e− βx

Γ(α + 10)

) /

(1 − c) (36)   

• A 2-parameter variant (HRF2) which additionally fixes the under-
shoot constant c at SPM’s default value of 16: 

HRF2(x; α, β)=def
(

βαxα− 1e− βx

Γ(α) −
βα+10xα+9e− βx

6Γ(α + 10)

) / (
5
6

)

(37)    

• A 1-parameter variant which fixes the shape parameter α at SPM’s 
default value of 6, implementing a “stretchable” canonical HRF: 

HRF1(x; β)=def
(

β6x5e− βx

Γ(6)
−

β16x15e− βx

6Γ(16)

) / (
5
6

)

(38) 

In all of these kernels, we initialize the parameters at the SPM de-
faults for the canonical HRF presented above. 

As in earlier experiments, we also consider LCG kernels. As discussed 
above, the LCG models are more heavily parameterized than those with 
parametric kernels (Table 6, see Table 2 for reading models). 

8.4. Model comparison 

To validate the CDR estimates of the HRF, we compare CDR fits to 
those produced by four existing approaches for modeling naturalistic 
fMRI experiments. First, we pre-convolve the stimuli using the canonical 

Table 6 
Number of parameters by kernel in the fMRI experiment. Note that BBVI and 
BBVI-improper double these figures by additionally fitting variances for each 
parameter in the variational posterior, and that sinh-arcsinh models additionally 
include parameters for the skewness and tailweight of the response.  

Kernel Parameters 

HRF1 128 
HRF2 135 
HRF3 142 
HRF4 149 
HRF5 156 
LCG 331  

38 Data are available at https://osf.io/eyp8q/.  
39 As discussed in Shain, Blank et al (2020), this dataset does not appear to 

support identification of richer by-subject random effects models, which 
generalize poorly to the out-of-sample sets. 
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HRF (Canonical HRF), as is done in many naturalistic studies (Brennan 
et al., 2012; Willems, Frank, Nijhof, Hagoort, & den Bosch, 2015; 
Henderson, Choi, Luke, & Desai, 2015; Henderson, Choi, Lowder, & 
Ferreira, 2016; Lopopolo, Frank, den Bosch, & Willems, 2017, inter 
alia). This approach has advantages for parsimony, since it avoids the 
need to fit coefficients at multiple time offsets. But it assumes a fixed, 
universal hemodynamic response that may not accurately describe the 
response profile in a given brain region (Handwerker, Ollinger, & 
D’Esposito, 2004). Second, we use piecewise linear interpolation to 
resample the predictors at timepoints that align with the fMRI scan times 
(Interpolated). This approach distorts the predictor series by treating it 
as a sequence of samples from an underlyingly continuous signal (see §3 
for discussion). Third, we use the fMRI scan times to define discrete 
temporal bins and then average the predictor values within each bin 
(Averaged). This approach has been used, for example, by Wehbe et al. 
(2021). Fourth, we follow Huth et al. (2016) in downsampling the 
predictor series to the temporal resolution of the fMRI signal by 
convolving it with a low-pass Lanczos filter with 3 lobes and a cutoff 
frequency of 0.25, the Nyquist frequency of the fMRI scanner (Lanc-
zos).40 This method essentially implements a “soft” variant of the 
averaging approach by taking a weighted sum of the stimuli in the 
neighborhood of an fMRI sample, weighted by a function (the Lanczos 
kernel) of the temporal distance between the stimulus and the sample. 
Mixed models with the same random effects structure as the CDR models 
described above were fitted using the lme4 package. For the Canonical 
HRF baseline, we applied a single fixed and by-fROI random slope per 
predictor, since the temporal modeling is implemented by the con-
volutional preprocess. For the Interpolated, Averaged, and Lanczos 
baselines, we applied fourth-order FIR models with fixed and by-fROI 
random slopes for the four TR’s preceding an fMRI sample. These FIR 
kernels implement a discretized version of the HRF and estimate its 
(non-parametric) shape from data. 

8.5. Results 

Fig. 8 shows plots of the IRF estimates from each kernel. For brevity, 

we only present the BBVI estimates. The full set of estimates using all 
inference types is given in Appendix C.3. As in previous experiments, 
results are highly consistent across these dimensions. 

Models estimate 5-gram surprisal to have the largest influence on the 
language network’s response, generally followed by rate and then by 
unigram surprisal. The sound power predictor tends to be assigned a small- 
magnitude negative response. 

Fig. 8 shows that all models find estimates that closely resemble the 
canonical HRF, and that these estimates do not change dramatically in 

Fig. 8. Natural Stories: BBVI-estimated IRFs by kernel.  

Table 7 
Natural Stories fMRI. CDR vs. baselines, mean-squared error. CDR results 
shown using 1-, 2-, 3-, 4-, and 5-parameter double-gamma hemodynamic 
response kernels, along with non-parametric LCG response kernels, fitted using 
MLE, BBVI improper, and BBVI. Best-performing models within the sets of 
baseline and CDR models are shown in italics. Best-performing overall models 
are shown in bold. Daggers (†) indicate convergence failures.   

Natural Stories fMRI 

Model Train Expl Test 

Canonical HRF 11.3548† 11.8263† 11.5661†

Interpolated 11.4236† 11.9888† 11.6654†

Averaged 11.3478† 11.9280† 11.6090†

Lanczos 11.3536† 11.9059† 11.5871†

CDR-HRF1-MLE 11.3442 11.8729 – 
CDR-HRF1-BBVI.imp 11.3442 11.8732 – 
CDR-HRF1-BBVI 11.3469 11.8600 – 
CDR-HRF2-MLE 11.3365 11.8551 – 
CDR-HRF2-BBVI.imp 11.3365 11.8550 – 
CDR-HRF2-BBVI 11.3386 11.8410 – 
CDR-HRF3-MLE 11.2810 11.7131 – 
CDR-HRF3-BBVI.imp 11.2809 11.7126 – 
CDR-HRF3-BBVI 11.2840 11.7058 – 
CDR-HRF4-MLE 11.2758 11.7033 – 
CDR-HRF4-BBVI.imp 11.2757 11.7034 – 
CDR-HRF4-BBVI 11.2808 11.7002 – 
CDR-HRF5-MLE 11.2730 11.6956 – 
CDR-HRF5-BBVI.imp 11.2730 11.6956 – 
CDR-HRF5-BBVI 11.2774 11.6928 11.5369 
CDR-LCG-MLE 11.2585 11.6819 – 
CDR-LCG-BBVI.imp 11.2607 11.6861 – 
CDR-LCG-BBVI 11.2762 11.7023 –  

40 Source code for this technique is available at https://github.com/HuthLab/ 
speechmodeltutorial. 
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the simplified reparameterizations of the HRF. At the same time, some 
models deviate from the canonical HRF in noteworthy ways. First, more 
parameterized models (HRF3+, which allow tuning of the undershoot 
amplitude c) tend to find a larger-magnitude undershoot component 
(the negative dip at the tail of the response kernel) than that of the ca-
nonical HRF. The ability to tune c and thus find deeper undershoots also 
corresponds to a striking improvement in both training and general-
ization performance (see the drop in error from HRF2 to HRF3 shown in 
Table 7). Second, the LCG model finds an early negative response 
consistent with prior evidence of an “initial dip” in the HRF (Yacoub 
et al., 2001; Röther et al., 2002; Hu & Yacoub, 2012, inter alia). Such a 
dip is outside the solution space of the parametric kernels used here and 
could only be discovered by LCG. 

These findings have several implications. First, they reassuringly 
show that CDR models discover patterns that resemble the canonical HRF 
and are thus consistent with decades of prior research on the hemody-
namic response, even using kernels with highly unconstrained solution 
spaces (LCG). Second they bear on prior concerns that the hemodynamic 
response is neither strictly stationary (Logothetis, 2003) nor strictly ad-
ditive (Friston, Josephs, et al., 1998, Friston, Mechelli, Turner, & Price, 
2000), possibly undermining the usefulness of fMRI measures from long- 
running naturalistic exposures where confounds from e.g. response 
saturation might be more pronounced (Lindquist et al., 2009). Our results 
are reassuring for naturalistic fMRI modeling since they directly support 
the hypothesis that the double-gamma shape continues to characterize 
the HRF not only in short constructed sensory experiments where it is 
typically studied, but also in long-running naturalistic experiments using 
indicators of high-level cognitive processes like language comprehen-
sion. Third, the deeper undershoot components and better fits obtained 
using more heavily parameterized models suggest that the canonical HRF 
may underestimate the size of the undershoot in the functional language 
network during naturalistic sentence comprehension, although further 
experiments would be needed to bear this out more convincingly. 

Table 7 compares the performance of CDR against that of the base-
lines described in §8.4. As shown, among the baseline models, pre- 
convolution with the canonical HRF performs quite well in terms of 
both in-sample and out-of-sample error (achieving the best generaliza-
tion performance of any baseline model), despite its reduced number of 
parameters and its inability to adapt the HRF to the data. However, CDR 
generally outperforms all baselines on all datasets. This indicates that 
CDR constitutes a substantial improvement over existing methods for 

modeling fMRI data in naturalistic experiments. 
We select CDR-HRF5-BBVI as the representative CDR model for the 

fMRI dataset because it is the most flexible and best-performing of the 
BBVI parametric models explored here. We compare CDR-HRF5-BBVI 
generalization performance on the test set to that of all baseline 
models.41 As shown in Table 7, CDR-HRF5-BBVI significantly out-
performs all baselines on the test set, and as shown in the Permutation test 
column of Table 8. As in Experiment A, we also compare the combined 
training and development set results from all CDR models against each 
baseline, using a binomial test of the success rate (rate at which any CDR 
model outperforms a baseline model). As shown in Table 8, the CDR 
success rate over each baseline is significantly greater than chance, 
indicating that CDR models generally achieve better in-sample and out- 
of-sample error than any of the baselines, even without careful tuning on 
an exploratory set. 

9. Hypothesis testing: Surprisal effects 

This section compares null hypothesis significance testing (NHST) 
methods using CDR models on a familiar result from psycholinguistics: 
surprisal effects in human sentence processing, which have been argued 
to support the existence of a predictive coding component of the lan-
guage comprehension architecture that generates expectations about 
upcoming words (Demberg & Keller, 2008; Frank & Bod, 2011; Smith & 
Levy, 2013). In particular, we are interested in statistical tests of CDR 
estimates of 5-gram surprisal against the null hypothesis of no effect. One 
possible approach is a credible intervals test, checking whether Monte- 
Carlo-estimated 95% credible intervals of the effect size (§4.2) in CDR 
for 5-gram surprisal include zero, which implements NHST at a 0.05 level 
of significance. This test rejects the null hypothesis for all comparisons, 
as shown in Table 9, where the upper and lower bounds on the 95% 
credible interval for the effect estimate g′ are always positive. However, 
as argued in §4.6, such a test is anticonservative in a CDR setting because 
of non-convexity, since the credible interval estimates only consider the 
local neighborhood of the mode to which the model has converged. 
Furthermore, such single-model tests are viewed with increasing skep-
ticism in psycholinguistics because they are influenced by multi-
collinearity, leading many researchers to favor ablative model 

Table 8 
fMRI data model comparison. Permutation tests of improvement from CDR-G-BBVI over baselines, along with binomial tests of the probability of CDR models 
improving over each baseline, aggregating over training and exploratory sets (those on which all CDR models are evaluated).   

Permutation test Binomial test 

Baseline p Success rate p 

Canonical HRF 4.0e-4*** 0.83 3.5e-5*** 
Interpolated 1.0e-4*** 1.0 1.5e-11*** 
Averaged 1.0e-4*** 1.0 1.5e-11*** 
Lanczos 1.0e-4*** 1.0 1.5e-11***  

Table 9 
Ablative testing results against null hypothesis of no effect for 5-gram surprisal, using three different CDR-appropriate testing procedures. Mean and 95% credible 
intervals for the CDR effect estimate g′ for 5-gram surprisal are shown in the g′ columns. Rejections of the null are shown in bold. Daggers (†) indicate convergence 
failures in one or both models. Plusses (+) indicate conceptual reproductions of tests in Shain (2019).    

g′ p-value 

Dataset Response Mean 2.5% 97.5% Direct PT 2-Step LRT 2-Step PT 

Natural Stories ms 0.729 0.706 0.753 1.0 2.2e-16***† 1.0†

+Natural Stories log-ms 0.011 0.011 0.011 3.0e-4*** 2.2e-16*** 1.0 
Dundee (FP) ms 3.52 3.32 3.71 1.0e-4*** 2.6e-14***† 0.074†

Dundee (FP) log-ms 0.012 0.011 0.013 2.0e-4*** 2.6e-14*** 0.016* 
fMRI BOLD 0.180 0.175 0.184 1.0e-4*** 1.0e-9*** 1.0e-4***  

41 The choice of BBVI for this analysis is motivated in §5.3. 
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comparisons against a baseline in which the fixed effect of interest is 
removed (Frank & Bod, 2011). Finally, in-sample tests such as a credible 
intervals test or a likelihood ratio test evaluate on the training data and 
are therefore unable to directly diagnose overfitting. This limitation can 
be addressed by the use of non-parametric out-of-sample tests, such as 
the paired permutation test. 

For the purposes of this hypothesis testing demonstration, we apply 
three testing paradigms (discussed in §4.6) against the null hypothesis of 
no effect for 5-gram surprisal in each of the datasets explored above:  

1. Direct PT: Ablative held-out paired permutation test (PT) of CDR 
models with and without a fixed effect for 5-gram surprisal.42  

2. 2-step LRT: Ablative likelihood ratio test (LRT) of LME models with 
and without a fixed effect for 5-gram surprisal, with models fitted to 
the training set using predictors convolved using the full CDR model.  

3. 2-step PT: Ablative held-out paired permutation test of LME models 
with and without a fixed effect for 5-gram surprisal, with models 
fitted to the training set using predictors convolved using the full 
CDR model. Tests are based on out-of-sample mean squared error. 

The key difference between the direct and 2-step approaches is that 
the 2-step tests use LME to estimate globally optimal intercepts and 
linear coefficients on the convolved data. The key difference between 
the LRT and PT approaches to 2-step testing is that PT is a non- 
parametric evaluation on out-of-sample data, while LRT is a para-
metric evaluation on in-sample data under asymptotic guarantees about 
the distribution of the likelihood ratio statistic (Wilks, 1938). In order to 
avoid evaluating multiple CDR models on the test set, tests use the same 
BBVI-estimated CDR models that were selected in the previously re-
ported baseline comparisons (BBVI inference, shifted gamma kernels for 
reading data and HRF5 kernels for fMRI data). LME models in 2-step LRT 
tests are fitted to data convolved using the full CDR model as a pre-
process (see §4.6 for details). To facilitate convergence, we simplify the 
LME structure by using uncorrelated random intercepts and slopes 
(Bates et al., 2015). Since these analyses are primarily for demonstration 
purposes and we seek uniformity within testing procedures across 
datasets, we take no further steps to address LME convergence problems 
in 2-step tests, although in practice it is recommended to simplify LME 
models until convergence is obtained before using them in scientific 
tests (Barr, Levy, Scheepers, & Tily, 2013). Out-of-sample permutation 
tests use likelihood difference (direct PT) or mean squared error dif-
ference (2-step PT) as the test statistic. We join the exploratory and test 
sets in each corpus to create the PT evaluation set. 

Results are shown in Table 9.43 The p-values of 1.0 observed in some 
cells indicate that the ablated model outperformed the full model on the 
evaluation set. Despite the use of simpler LME models with uncorrelated 
random intercepts and slopes, convergence failures affect the 2-step re-
sults for the linear response (ms) models of Natural Stories and Dundee. 

The 2-step LRT test is the least conservative, rejecting the null (and 
supporting the existence of surprisal effects) in all models. This is un-
surprising both because the likelihood ratio test is maximally powerful 
(Neyman & Pearson, 1933) and because it is in-sample and therefore 
unable to directly account for external validity, unlike PT, which is based 
on generalization quality. Generalization-based tests like PT are arguably 
more likely to favor replicable findings than in-sample tests like LRT, 
since an effect that is significant by LRT on the training data but does not 
generalize to a different sample is of limited scientific interest. The direct 
PT test rejects the null for all models except Natural Stories (ms), where 

ablated models outperform the full model. We leave further exploration 
of this exception to future research. Nonetheless, direct PT results overall 
support the existence of surprisal effects on all three kinds of experi-
mental measures considered here. The 2-step PT test appears to be the 
most conservative of the testing procedures evaluated here, only rejecting 
the null for two out of five comparisons. These results suggest that LME 
models fitted to CDR-convolved data generalize less well than the un-
derlying CDR model itself. In light of this finding and the evidence from 
§4.6 that CDR-estimated coefficients are near globally optimal, the added 
complexity of the 2-step approach may be of limited value. 

In sum, using multiple testing procedures, CDR models generally 
reveal evidence for surprisal effects across all datasets considered here. 
Although all three procedures described here are appropriate for testing 
scientific hypotheses, we recommend the direct test because of its 
simplicity and in light of the combined evidence that (1) CDR-estimated 
coefficients are near-optimal (§4.6), (2) LME models in 2-step tests are 
prone to convergence problems, and (3) LME estimates in 2-step PT tend 
to generalize less well than CDR estimates. 

10. General recommendations 

The foregoing results suggest certain empirically-motivated best 
practices for future CDR analyses of psycholinguistic time series. These 
best practices are used as defaults in the CDR implementation proposed 
here, although they can easily be overridden on a model-by-model basis 
as motivated by the experimental design. 

10.1. Inference type: BBVI 

Of the three inference types examined here (MLE, BBVI-improper, 
and BBVI), results show that BBVI tends to converge more quickly 
(§5.3). As shown in Appendix C, they also tend to yield more conser-
vative estimates of uncertainty (§6). For these reasons, we suggest BBVI 
inference as a general default. MLE and BBVI-improper inference modes 
are still useful for sanity checking and sometimes obtain better error. 

10.2. Kernel type: parametric 

Results show a strong tendency for low-dimensional parametric 
response kernels to perform at least as well as high-dimensional LCG 
kernels in terms of synthetic IRF recovery and generalization error. 
Furthermore, depending on compute architecture, LCG kernels can be 
many times slower per iteration than parametric ones, in part because 
they contain many more parameters (Table 2). At the same time, over- 
constrained kernels can lead to high model bias (see e.g. exponential 
kernels fitted to shifted gamma responses in Simulation D). For this 
reason, we recommend the use of parametric kernels for research pur-
poses whenever possible (i.e. whenever domain knowledge suggests a 
parametric kernel that covers the space of plausible solutions), although 
sanity checking the results against LCG estimates can be a useful step for 
datasets rich enough to support discovery of LCG models. 

10.3. Convergence criterion: Time-loss correlation 

We have proposed and applied a CDR convergence criterion based on 
statistical tests for non-decreasing loss. All parametric CDR models in 
this study met this criterion within a reasonable number of training it-
erations, suggesting that it is robust and scale-independent, as argued in 

42 Tests are based on out-of-sample likelihood rather than mean-squared error 
to enable consistent application to models with asymmetric error distributions 
explored in Appendices B and C.4, since the latter do not optimize mean 
squared error.  
43 For full hypothesis testing results, including all error distributions and 

duration definitions considered in this study, see Appendix C.4. 
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§5.2.44 The use of a reliable automatic stopping criterion reduces the 
number of experimenter degrees of freedom by eliminating the need for 
researchers to decide when model training has completed. 

11. Conclusion 

This article motivated, defined, implemented, and evaluated a 
framework for continuous-time deconvolutional regression (CDR) of 
arbitrary time series data, building on a proposal from Shain and Schuler 
(2018). Synthetic evaluations explored the influence of several plausible 
confounds, showing that CDR recovers the data-generating model under 
various kinds of noise, temporal structure in the predictor and response 
signals, multicollinearity, and impulse response function (IRF) mis-
specification, using multiple forms of statistical inference (maximum 
likelihood, black-box variational Bayes, and black-box variational Bayes 
with improper uniform priors). Real-world evaluations on reading la-
tencies and fMRI measures from human subjects explored the influence 
of different IRF kernel types, inference types, and error transforms, 
showing highly consistent IRF estimates across these dimensions. Sta-
tistical comparisons to standard baselines (linear mixed-effects and 
generalized additive models, with and without finite impulse response 
filters) on human subjects data showed that CDR improves 

generalization performance in multiple domains (self-paced reading, 
eye-tracking during reading, and fMRI). This article also proposed 
multiple procedures for testing scientific hypotheses in a CDR frame-
work and evaluated their application to tests of surprisal effects in 
human sentence processing. These findings support the use of CDR for 
analyzing many classes of time series data, since it provides fine-grained 
estimates of temporal structure and directly controls for diffusion of 
effects, especially in settings (e.g. naturalistic language processing) 
where discrete-time deconvolutional methods are difficult to apply. 
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Appendix A. CDR (mixed effects) model  

Table A1 
Summary of variables in CDR model definition.   

Name Type Description 

Dimensions X ℕ Number of predictor observations 
Y ℕ Number of response observations 
Z ℕ Number of random grouping factor levels 
K ℕ Number of predictors 
R ℕ Number of impulse response parameters 
J ℕ Number of unique time series 

Data X ℝX×K X predictor observations 
y ℝY Y response observations 
Z {0, 1}Y×Z Random effects indicator 
t ℝX Timestamps of observations in X 
t′ ℝY Timestamps of observations in y 
s {1, 2, …, J}X Time series IDs of observations in X 
s′ {1, 2, …, J}Y Time series IDs of observations in y 

Parameters μ ℝ Fixed intercept 
m ℝZ Random intercepts 
u ℝK Fixed coefficients 
U ℝZ×K Random coefficients 
vk ℝR Fixed IRF parameters for the kth predictor 
Vk ℝZ×R Random IRF parameters for the kth predictor 
σ2 ℝ+ Variance 

Model gk(t; θ) ℝ+ → ℝ IRF kernel for the kth predictor, function of time t given parameters θ 
m′ ℝY Fixed + random intercepts 
U′ ℝY×K Fixed + random coefficients 
Vk

′ ℝY×R Fixed + random IRF parameters for predictor k 
F {0, 1}Y×X Convolution mask 
Gk ℝY×X Convolution matrix for the kth predictor 
X′ ℝY×X Convolved design matrix   

A.1. Mixed effects definition 

In addition to the variable definitions assumed in §4.1, the mixed-effects CDR assumes the following quantities:  

• Z ∈ ℕ: Number of random grouping factor levels45 

44 While the criterion is robust to the scale of the loss, it is sensitive to low-level training parameters like the learning rate, optimizer, and batch size. For example, 
the 500-iteration window used for convergence diagnosis in these experiments may lead to unnecessarily long training times at smaller batch sizes or learning rates. 
Users who manipulate these optimization settings should also revisit the convergence parameters in order to ensure that they are still appropriate.  
45 The sum total of all levels of each random grouping factor in the model, e.g. the number of subjects plus the number of items. 
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• Z ∈ {0, 1}Y×Z: Boolean matrix indicating random grouping factor levels associated with each response observation 

Following e.g. lme4 (Bates et al., 2015), we use random grouping factor to refer to variables that capture categorical random variation in a model (e. 
g. participant or item) and random grouping factor level to refer to individual values of a random grouping factor (e.g. the value participant A of the 
random grouping factor participant). 

In addition to the fixed parameters defined in §4.1, mixed-effects CDR seeks to estimate the following quantities:  

• a vector m ∈ ℝZ of Z random intercepts  
• a matrix U ∈ ℝZ×K of ZK random coefficients, i.e. random estimates for each of K predictors for each of Z random effects levels  
• K matrices Vk ∈ ℝZ×R of ZR random IRF kernel parameters, i.e. random estimates for each of K predictors for each of R IRF parameters for each of Z 

random effects levels 

Random parameters m, U, and Vk are constrained to be zero-centered within each random grouping factor.46 

A fixed-effects CDR model therefore contains 2 + K + KR parameters: one intercept, K coefficients (one for each predictor), KR IRF parameters (R 
parameters for each predictor), and one variance of the response. Mixed-effects CDR models can also include random variation in the intercept, 
coefficients, and/or IRF parameters. This yields at most 1 + (Z + 1)(1 + K + KR) estimates for a mixed effects model with Z total random grouping 
factor levels (for example, the number of subjects plus items). Sub-maximal numbers of estimates can arise by forcing random effects components to 
zero. For example, zeroing out vk and Vk eliminates random coefficients and IRF parameters for the k th predictor. 

To support mixed modeling, the fixed and random effects must first be combined by adding fixed effects with their random offsets using the 
indicator matrix Z, resulting in intercept vector m′ ∈ ℝY, coefficient matrix U′ ∈ ℝY×K and IRF parameter matrices Vk

′ ∈ ℝY×R for k ∈ {1, 2, …, K}: 

m′

=
defμ+Zm (39)  

U′

=
def1u⊤ + ZU (40)  

V′

k=
def1v⊤

k +ZVk (41) 

In a mixed model, we must redefine the convolution procedure to use the summed fixed+random effects above: 

Gk=
defgk

(
t′ 1⊤ − 1t⊤;V′

k

)
⊙ F (42)  

X′

[*,k]=
defGk X[*,k] (43)  

y ∼ N
(
m′

+ (X′

⊙ U′

)1 , σ2) (44) 

A summary table of the variable definitions above is provided in Appendix Table A1, and a step-through example of the CDR equations is provided 
in Appendix A.3. 

A.2. Effect estimates in (Mixed Effects) CDR 

Similarly to the unscaled and scaled fixed effects estimates g, g′, unscaled and scaled random effect estimates H, H′ ∈ ℝZ×K are computed by 
integrating the IRF, in this case for each level of each random grouping factor: 

H[z,k]=
def

∫ ∞

0
gk

(
t;V′

k[z,*]

)
dt (45)  

H′

=
defH ⊙ U − 1g′ ⊤ (46) 

The fixed effect estimate g′ is subtracted out to ensure that H′ denotes the deviation at each level from the fixed effect size. 
In mixed-effects CDR models with random impulse response parameters, the IRF shape — and therefore the integral of the IRF — can vary between 

levels of the random grouping factor. As a result, zero-centering the random coefficients U within each grouping factor is insufficient to guarantee 
zero-centered random effect estimates. For example, in a 2-level mixed univariate CDR model with fixed effect sizes g′ = [1 1]⊤, random coefficients 
U = [ − 1 1 ]

⊤, and unscaled random effect estimates (IRF integrals) H = [ 1 10 ]
⊤, U has mean 0, but the random effect estimate vector H′

=

H ⊙ U − 1g′ ⊤
= [ − 2 9 ]

⊤ has mean 3.5, yielding a biased population level effect estimate. 
To overcome this, we constrain the IRFs gk to have a unit integral over the positive real line, as discussed in §4.2. Under this constraint, zero- 

centered coefficients are guaranteed to yield zero-centered effect estimates, and the population-level (fixed) effect estimates are unbiased.47 

A.3. CDR model: A worked example 

Consider a model containing two predictors p1 and p2 and two random effects levels s1 and s2. Assume the following 6 rows for each of X (pre-
dictors), t (predictor timestamps), and s (predictor series IDs): 

46 In practice, we also assume normally distributed random effects, either implicitly (via L2 regularization) or explicitly (via variational priors and posteriors). See 
§5.3 for details.  
47 In models without random IRF parameters, the IRF integrals are identical across levels of the random grouping factor, and effect estimates are thus unbiased with 

or without normalization. Normalizing can still have numerical advantages since it factors effect size and shape, so we apply normalization to all models reported 
here, regardless of whether they contain random IRF parameters. 
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Assume the following four rows for each of Z (random effects indicator), t′ (response timestamps), and s′ (response series IDs):

Assume a Gaussian IRF kernel with scalar location and scale parameters w1, w2: 

g1(x;w1,w2) = g2(x;w1,w2) = e
− (x− w1)

2

w2 

Assume the following model parameters μ, m, u, U, v1, v2, V1, V2, and σ2. Note that random effects m, U, V1, and V2 are zero-centered:

We use the CDR equations to generate estimates for the four elements of y using the inputs and parameters. The vector m′ = μ + Z m contains 
intercepts for each element of y and is computed as follows: 

m′

= 1.3
⏞⏟⏟⏞

μ

+

s1 s2⎡

⎢
⎢
⎣

1 0
1 0
0 1
0 1

⎤

⎥
⎥
⎦

⏞̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅⏞
Z

[
− 0.2
0.2

]⏞̅̅̅̅⏟⏟̅̅̅̅⏞
m

= 1.3
⏞⏟⏟⏞

μ

+

⎡

⎢
⎢
⎣

− 0.2
− 0.2
0.2
0.2

⎤

⎥
⎥
⎦

⏞̅̅̅̅̅ ⏟⏟̅̅̅̅̅ ⏞
Zm

=

⎡

⎢
⎢
⎣

1.1
1.1
1.5
1.5

⎤

⎥
⎥
⎦

⏞̅̅̅ ⏟⏟̅̅̅ ⏞
μ+Zm  
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m′

= 1.3
⏞⏟⏟⏞

μ

+

s1 s2⎡

⎢
⎢
⎣

1 0
1 0
0 1
0 1

⎤

⎥
⎥
⎦

⏞̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅⏞
Z

[
− 0.2
0.2

]⏞̅̅̅̅⏟⏟̅̅̅̅⏞
m

= 1.3
⏞⏟⏟⏞

μ

+

⎡

⎢
⎢
⎣

− 0.2
− 0.2
0.2
0.2

⎤

⎥
⎥
⎦

⏞̅̅̅̅̅ ⏟⏟̅̅̅̅̅ ⏞
Zm

=

⎡

⎢
⎢
⎣

1.1
1.1
1.5
1.5

⎤

⎥
⎥
⎦

⏞̅̅̅ ⏟⏟̅̅̅ ⏞
μ+Zm 

The matrix U′ = 1u⊤ + Z U contains coefficients for both predictors for each element of y and is computed as follows: 

V1 =

⎡

⎢
⎢
⎢
⎣

1
1
1
1

⎤

⎥
⎥
⎥
⎦

⏞̅⏟⏟̅⏞
1

[0.8 1.7]
⏞̅̅̅̅̅̅ ⏟⏟̅̅̅̅̅̅ ⏞

v⊤
1

+

s1 s2
⎡

⎢
⎢
⎢
⎣

1 0
1 0
0 1
0 1

⎤

⎥
⎥
⎥
⎦

⏞̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅⏞
Z

p1 p2
[
− 0.2 0.1
0.2 − 0.1

]

⏞̅̅̅̅̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅⏞
V1

=

⎡

⎢
⎢
⎢
⎣

0.8 1.7
0.8 1.7
0.8 1.7
0.8 1.7

⎤

⎥
⎥
⎥
⎦

⏞̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅⏞
1v⊤

1

+

⎡

⎢
⎢
⎢
⎣

− 0.2 0.1
− 0.2 0.1

0.2 − 0.1
0.2 − 0.1

⎤

⎥
⎥
⎥
⎦

⏞̅̅̅̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅⏞
zV1

=

⎡

⎢
⎢
⎢
⎣

0.6 1.8
0.6 1.8
1.0 1.6
1.0 1.6

⎤

⎥
⎥
⎥
⎦

⏞̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅⏞
1v⊤

1 + zV1 

The matrices V1
′ = 1v1

⊤+ Z V1 and V2
′ = 1v2

⊤+ Z V2 contain IRF parameters for responses to p1 and p2, respectively, for each of the four elements of 
y. They are computed as follows: 

V′

2 =

⎡

⎢
⎢
⎢
⎣

1
1
1
1

⎤

⎥
⎥
⎥
⎦

⏞̅⏟⏟̅⏞
1

[1.1 0.5]
⏞̅̅̅̅̅̅ ⏟⏟̅̅̅̅̅̅ ⏞

v⊤
2

+

s1 s2
⎡

⎢
⎢
⎢
⎣

1 0
1 0
0 1
0 1

⎤

⎥
⎥
⎥
⎦

⏞̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅⏞
Z

p1 p2
[ 0.3 0.4
− 0.3 − 0.4

]

⏞̅̅̅̅̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅⏞
V2

=

⎡

⎢
⎢
⎢
⎣

1.1 0.5
1.1 0.5
1.1 0.5
1.1 0.5

⎤

⎥
⎥
⎥
⎦

⏞̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅⏞
1v⊤

2

+

⎡

⎢
⎢
⎢
⎣

0.3 0.4
0.3 0.4

− 0.3 − 0.4
− 0.3 − 0.4

⎤

⎥
⎥
⎥
⎦

⏞̅̅̅̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅⏞
zV2

=

⎡

⎢
⎢
⎢
⎣

1.4 0.9
1.4 0.9
0.8 0.1
0.8 0.1

⎤

⎥
⎥
⎥
⎦

⏞̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅⏞
1v⊤

2 + zV2 

The mask matrix F[y,x]=
def

⎧
⎨

⎩

1
(

s[x] = s′

[y]

)
and

(
t[x] ≤ t′[y]

)

0 otherwise 
indicates predictor observations that precede each element of y in the same time series. 

Timestamp vectors t, t′ and series ID vectors s, s′ are shown on the top and left axes for expository purposes. 
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To compute convolution matrices G1, G2, we first compute an array t′1⊤ − 1t containing distance in time of predictors from responses: 

t′1⊤ − 1t =

⎡

⎢
⎢
⎣

1
4
2
3

⎤

⎥
⎥
⎦

⏞̅⏟⏟̅⏞
t′

[ 1 1 1 1 1 1 ]
⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞

1⊤

−

⎡

⎢
⎢
⎣

1
1
1
1

⎤

⎥
⎥
⎦

⏞̅⏟⏟̅⏞
1

[ 0 2 3 0 1 4 ]
⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞

t⊤

=

⎡

⎢
⎢
⎣

1 1 1 1 1 1
4 4 4 4 4 4
2 2 2 2 2 2
3 3 3 3 3 3

⎤

⎥
⎥
⎦

⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞
t′ 1⊤

−

⎡

⎢
⎢
⎣

0 2 3 0 1 4
0 2 3 0 1 4
0 2 3 0 1 4
0 2 3 0 1 4

⎤

⎥
⎥
⎦

⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞
1t⊤

=

⎡

⎢
⎢
⎣

1 − 1 − 2 1 0 − 3
4 2 1 4 3 0
2 0 − 1 2 1 − 2
3 1 0 3 2 − 1

⎤

⎥
⎥
⎦

⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞
t′ 1⊤ − 1t⊤

These distances are supplied as inputs to the impulse response functions g1, g2, and irrelevant cells (i.e. cells from the future or cells from other time 
series) are masked using F. The resulting convolution matrices G1 = g1(t′1⊤ − 1t⊤; V1

′) ⊙ F, G2 = g2(t′ 1⊤ − 1t⊤; V2
′) ⊙ F contain the convolution 

weights to apply to the elements of X in order to generate y. They are computed as follows, where gk is parameterized row-wise by Vk
′ and applied 

elementwise to t′ 1⊤ − 1t⊤: 

G1 = g1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎣

1 − 1 − 2 1 0 − 3
4 2 1 4 3 0
2 0 − 1 2 1 − 2
3 1 0 3 2 − 1

⎤

⎥
⎥
⎥
⎦

⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞
t′ 1⊤ − 1t⊤

;

⎡

⎢
⎢
⎢
⎣

0.6 1.8
0.6 1.8
1.0 1.6
1.1 1.6

⎤

⎥
⎥
⎥
⎦

⏞̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅⏞
V′1 ⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⊙

⎡

⎢
⎢
⎢
⎣

1 0 0 0 0 0
1 1 1 0 0 0
0 0 0 1 1 0
0 0 0 1 1 0

⎤

⎥
⎥
⎥
⎦

⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞
F

=

⎡

⎢
⎢
⎢
⎣

0.91 0.24 0.02 0.91 0.82 0.00
0.00 0.34 0.91 0.00 0.04 0.00
0.54 0.54 0.08 0.54 1.00 0.00
0.08 1.00 0.54 0.08 0.54 0.08

⎤

⎥
⎥
⎥
⎦

⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞
g1
(
t′ 1⊤ − 1t⊤;V′

1

)

⊙

⎡

⎢
⎢
⎢
⎣

1 0 0 0 0 0
1 1 1 0 0 0
0 0 0 1 1 0
0 0 0 1 1 0

⎤

⎥
⎥
⎥
⎦

⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞
F

=

⎡

⎢
⎢
⎢
⎣

0.91 0.00 0.00 0.00 0.00 0.00
0.00 0.34 0.91 0.00 0.00 0.00
0.00 0.00 0.00 0.54 1.00 0.00
0.00 0.00 0.00 0.08 0.54 0.00

⎤

⎥
⎥
⎥
⎦

⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞
g1
(
t′ 1⊤ − 1t⊤;V′

1

)
⊙ F  
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G2 = g2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎣

1 − 1 − 2 1 0 − 3
4 2 1 4 3 0
2 0 − 1 2 1 − 2
3 1 0 3 2 − 1

⎤

⎥
⎥
⎥
⎦

⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞
t′ 1⊤ − 1t⊤

;

⎡

⎢
⎢
⎢
⎣

1.4 0.9
1.4 0.9
0.8 0.1
0.8 0.1

⎤

⎥
⎥
⎥
⎦

⏞̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅⏞
V′1 ⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⊙

⎡

⎢
⎢
⎢
⎣

1 0 0 0 0 0
1 1 1 0 0 0
0 0 0 1 1 0
0 0 0 1 1 0

⎤

⎥
⎥
⎥
⎦

⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞
F

=

⎡

⎢
⎢
⎢
⎣

0.84 0.00 0.00 0.84 0.11 0.00
0.00 0.67 0.84 0.00 0.06 0.11
0.00 0.00 0.00 0.00 0.67 0.00
0.00 0.67 0.00 0.00 0.00 0.00

⎤

⎥
⎥
⎥
⎦

⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞
g2
(
t′ 1⊤ − 1t⊤;V′

2

)

⊙

⎡

⎢
⎢
⎢
⎣

1 0 0 0 0 0
1 1 1 0 0 0
0 0 0 1 1 0
0 0 0 1 1 0

⎤

⎥
⎥
⎥
⎦

⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞
F

=

⎡

⎢
⎢
⎢
⎣

0.84 0.00 0.00 0.00 0.00 0.00
0.00 0.67 0.84 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.67 0.00
0.00 0.00 0.00 0.00 0.00 0.00

⎤

⎥
⎥
⎥
⎦

⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞
g2
(
t′ 1⊤ − 1t⊤;V′

2

)
⊙ F 

The two columns of the convolved predictor matrix X′ = G2 X[*,2] are computed by pre-multiplying each column with its corresponding convo-
lution matrix: 

X′

[*,1] =

⎡

⎢
⎢
⎢
⎣

0.91 0.00 0.00 0.00 0.00 0.00
0.00 0.34 0.91 0.00 0.00 0.00
0.00 0.00 0.00 0.54 1.00 0.00
0.00 0.00 0.00 0.08 0.54 0.00

⎤

⎥
⎥
⎥
⎦

⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞
G1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

5
− 1
6
2
0
− 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⏞̅̅̅ ⏟⏟̅̅̅ ⏞
X[*,1]

=

⎡

⎢
⎢
⎢
⎣

4.55
5.15
1.08
0.16

⎤

⎥
⎥
⎥
⎦

⏞̅̅̅̅⏟⏟̅̅̅̅⏞
G1X[*,1]

X′

[*,2] =

⎡

⎢
⎢
⎢
⎣

0.84 0.00 0.00 0.00 0.00 0.00
0.00 0.67 0.84 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.67 0.00
0.00 0.00 0.00 0.00 0.00 0.00

⎤

⎥
⎥
⎥
⎦

⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞
G2

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
3
1
2
1
− 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⏞̅̅̅ ⏟⏟̅̅̅ ⏞
X[*,2]

=

⎡

⎢
⎢
⎢
⎣

0.00
2.85
0.67
0.00

⎤

⎥
⎥
⎥
⎦

⏞̅̅̅̅⏟⏟̅̅̅̅⏞
G2X[*,2]

X′

=

⎡

⎢
⎢
⎣

4.55 0.00
5.15 2.85
1.08 0.67
0.16 0.00

⎤

⎥
⎥
⎦

The expected response ŷ = m′

+(X′

⊙ U′

)1 is computed by rescaling X′ by the coefficient matrix U′, summing across predictors, and shifting by the 
intercept m′, as shown: 
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ŷ =

⎡

⎢
⎢
⎣

1.1
1.1
1.5
1.5

⎤

⎥
⎥
⎦

⏞̅̅̅ ⏟⏟̅̅̅ ⏞
m′

+

⎛

⎜
⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎣

4.55 0.00
5.15 2.85
1.08 0.67
0.16 0.00

⎤

⎥
⎥
⎦

⏞̅̅̅̅̅̅̅̅̅̅̅ ⏟⏟̅̅̅̅̅̅̅̅̅̅̅ ⏞
X′

⊙

⎡

⎢
⎢
⎣

− 0.5 1.2
− 0.2 1.2
0.4 − 0.2
0.4 − 0.2

⎤

⎥
⎥
⎦

⏞̅̅̅̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅⏞
U′

⎞

⎟
⎟
⎟
⎟
⎟
⎠

[
1
1

]⏞̅⏟⏟̅⏞
1

=

⎡

⎢
⎢
⎣

1.1
1.1
1.5
1.5

⎤

⎥
⎥
⎦

⏞̅̅̅ ⏟⏟̅̅̅ ⏞
m′

+

⎡

⎢
⎢
⎣

− 0.91 0.00
− 1.03 3.42
0.43 − 0.13
0.06 0.00

⎤

⎥
⎥
⎦

⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞
X′

⊙ U′

[
1
1

]⏞̅⏟⏟̅⏞
1

=

⎡

⎢
⎢
⎣

1.1
1.1
1.5
1.5

⎤

⎥
⎥
⎦

⏞̅̅̅ ⏟⏟̅̅̅ ⏞
m′

+

⎡

⎢
⎢
⎣

− 0.91
2.39
0.30
0.06

⎤

⎥
⎥
⎦

⏞̅̅̅̅̅̅ ⏟⏟̅̅̅̅̅̅ ⏞
(X′

⊙ U′

)1

=

⎡

⎢
⎢
⎣

0.19
3.49
1.80
1.56

⎤

⎥
⎥
⎦

⏞̅̅̅̅⏟⏟̅̅̅̅⏞
m′

+ (X′

⊙ U′

)1  

Appendix B. Addressing non-normally distributed error: Log-normal and sinh-arcsinh transforms 

Like ordinary linear regression, the CDR model defined in §4 assumes a Gaussian error distribution. However, it is often necessary to analyze data 
that violate this assumption. A common solution to non-normal errors is to apply a normalizing transform, such as a log transform or a power 
transform (Box & Cox, 1964). Transforms can complicate model interpretation by changing the linking function. For example, log transforming the 
response creates a log-linear rather than linear model on the convolved data, and model estimates thus describe a multiplicative rather than additive 
change in the response as a function of the predictors. 

In this study, we therefore also consider an alternative approach, made possible by our use of stochastic gradient optimization directly on the 
likelihood surface. Instead of defining the error distribution as Gaussian, we can define it as a sinh-arcsinh transform on the Gaussian distribution.48 

The sinh-arcsinh transformed Gaussian is a generalization of the Gaussian distribution that additionally contains skewness and tailweight parameters 
ϵ ∈ ℝ and δ ∈ ℝ+ (Jones & Pewsey, 2009). When ϵ = 0 and δ = 1, the distribution is Gaussian. When ε < 0, the distribution has negative skew, and when 
ϵ > 0, the distribution has positive skew. Tail thickness increases with δ. Both ϵ and δ are estimated from data, along with all other model parameters. 
The advantage of using sinh-arcsinh error over normalizing transforms is that it can flexibly adapt to asymmetrically distributed data without 
transforming it, thus preserving the original scale of the response as well as the additive interpretation of model estimates while also relaxing 
normality assumptions. Normalizing transforms and sinh-arcsinh error distributions are explored in §14 for the reading and fMRI experiments. As 
shown below, sinh-arcsinh improves goodness of fit over Gaussian error across all model designs, supporting its adoption for CDR modeling. However, 
we stress that sinh-arcsinh error is not appropriate for settings in which estimates will ultimately be used in ways that assume normally-distributed 
error. For example, researchers may wish to evaluate CDR models with respect to squared error or percent variance explained. Such evaluations 
assume a Gaussian likelihood and are therefore not appropriate for asymmetric error distributions like sinh-arcsinh. 

Appendix C. Full results 

Here we present the full set of results from all analysis conducted in this study, including synthetic datasets, self-paced-reading and eye-tracking 
during reading datasets, and the fMRI dataset. As discussed in Appendix B, in the reading and fMRI analyses we additionally explore the effect of using 
a sinh-arcsinh transform of a normal error distribution. 

C.1. Simulation 

Figs. A1, A2, A3, A4, A5 and A6 show impulse response estimates for all inference types and (in Simulation D) response kernels used in all simulation 
studies. As shown, estimates are highly consistent across inference types and response kernels and are robust to noise, non-uniform temporal distribution 
of events, multicollinearity, and impulse response misspecification, as long as the underlying response falls within the model’s solution space. 

48 The sinh-arcsinh transform on the standard normal distribution with skewness ϵ and tailweight δ yields probability density fε, δ: 

fϵ,δ(x)=
def{2π

(
1 + x2) }− 1/2δCϵ,δ(x)exp

{
− S2

ϵ,δ(x)
/

2
}

(47)  

Sϵ,δ(x)=
defsinh

{
δsinh− 1(x) − ϵ

}
(48)  

Cϵ,δ(x)=
def
{

1 + S2
ϵ,δ(x)

}1/2x
(49)  

In practice, location and scale can also be parameterized. For additional details, see Jones and Pewsey (2009). 
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Fig. A1. Simulation A: Noise. True synthetic model vs. CDR-estimated models with increasingly large standard deviation σϵ of the Gaussian noise distribution. The 
twenty IRFs (corresponding to the twenty random covariates) are represented by distinct curves in each plot. BBVI and BBVI-improper are plotted with 95% 
credible intervals.  
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Fig. A2. Simulation B: Time. True synthetic model vs. CDR-estimated models with varying types of time interval. The twenty IRFs (corresponding to the twenty 
random covariates) are represented by distinct curves in each plot.  
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Fig. A3. Simulation C: Multicollinearity. True synthetic model vs. CDR-estimated models with increasingly multicollinear predictors. The twenty IRFs (corresponding 
to the twenty random covariates) are represented by distinct curves in each plot.  

C. Shain and W. Schuler                                                                                                                                                                                                                      



Cognition 215 (2021) 104735

35

Fig. A4. Simulation D: Misspecification (exponential ground truth). True exponential model vs. CDR-estimated models using various IRF kernels. The twenty IRFs 
(corresponding to the twenty random covariates) are represented by distinct curves in each plot.  
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Fig. A5. Simulation D: Misspecification (normal ground truth). True normal model vs. CDR-estimated models using various IRF kernels. The twenty IRFs (corre-
sponding to the twenty random covariates) are represented by distinct curves in each plot.  
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C.2. Reading 

We apply exponential, normal, shifted gamma, and LCG kernels to Gaussian and sinh-arcsinh error distributions of linear and log-transformed 
reading durations in Natural Stories (self-paced reading) and Dundee (eye-tracking), using MLE, BBVI improper, and BBVI inference. For Dundee, 
we consider scan pass durations (discussed in the main article) along with first pass and go-past durations (presented here). First pass duration is 
defined as the time elapsed between entering a word region from the left and entering a different word region to its left or right. Go-past duration is 
defined as the time elapsed between entering a word region from the left and entering a word region to its right (including all intervening regressive 
fixations).       

Fig. A6. Simulation D: Misspecification (shifted gamma ground truth). True shifted gamma model vs. CDR-estimated models using various IRF kernels. The twenty 
IRFs (corresponding to the twenty random covariates) are represented by distinct curves in each plot.  
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Fig. A7. Natural Stories: IRF estimates using linear vs. logarithmic responses, Gaussian vs. sinh-arcsinh error distributions, and various impulse response kernels.   
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Fig. A8. Natural Stories: Quantile-quantile plots of fitted (x-axis) to true (y-axis) error distributions on the training set, using linear vs. logarithmic responses, 
Gaussian vs. sinh-arcsinh error distributions, and various impulse response kernels. The theoretical best-fit line is plotted in red. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.)  
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Fig. A9. Dundee (first past): IRF estimates using linear vs. logarithmic responses, Gaussian vs. sinh-arcsinh error distributions, and various impulse 
response kernels.  
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Fig. A10. Dundee (first pass): Quantile-quantile plots of fitted (x-axis) to true (y-axis) error distributions on the training set, using linear vs. logarithmic responses, 
Gaussian vs. sinh-arcsinh error distributions, and various impulse response kernels. The theoretical best-fit line is plotted in red. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.)  
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Fig. A11. Dundee (go-past): IRF estimates using linear vs. logarithmic responses, Gaussian vs. sinh-arcsinh error distributions, and various impulse 
response kernels.  
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Fig. A12. Dundee (go-past): Quantile-quantile plots of fitted (x-axis) to true (y-axis) error distributions on the training set, using linear vs. logarithmic responses, 
Gaussian vs. sinh-arcsinh error distributions, and various impulse response kernels. The theoretical best-fit line is plotted in red. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.)  
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Fig. A13. Dundee (scan path): IRF estimates using linear vs. logarithmic responses, Gaussian vs. sinh-arcsinh error distributions, and various impulse response 
kernels. IRFs are distinguished for predictors under regressive eye movements are distinguished by (+reg).  

C. Shain and W. Schuler                                                                                                                                                                                                                      



Cognition 215 (2021) 104735

45

Fig. A14. Dundee (scan path): Quantile-quantile plots of fitted (x-axis) to true (y-axis) error distributions on the training set, using linear vs. logarithmic responses, 
Gaussian vs. sinh-arcsinh error distributions, and various impulse response kernels. The theoretical best-fit line is plotted in red. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.) 

Figs. A7, A9, A11, and A13 show the full response estimates for Natural Stories, Dundee first pass, Dundee go-past, and Dundee scan path, 
respectively. For ease of comparison, x- and y-axis dimensions are shared within each response definition per dataset. However, some estimates 
(Natural Stories and Dundee go-past) are so extreme that including them would compromise visual clarity. In these cases, we clip the estimates in the 
main plots, then plot the full responses with adjusted y-axes under the heading “Clipped plots”. 

Models show similar estimates of temporal dynamics across response definitions, error definitions, and IRF kernels, and generally conform to prior 
expectations about effect sizes and direction, as discussed in §7, including across different duration definitions in Dundee. There are some key ex-
ceptions to this pattern. First, some models of go-past duration in Dundee find very large early saccade length effects, in some cases orders of 
magnitude larger than any other effect in the model. This outcome is relatively uncommon. Exceptions are primarily found in Gaussian error models of 
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untransformed Dundee go-past durations, although two such examples also occur in Gaussian error models of log-transformed go-past durations (see 
“Clipped plots” in Fig. A11). The source of these apparent outlier estimates using go-past durations is left to future research. Second, the Gaussian error 
BBVI-estimated LCG model of Dundee scan path durations is a clear outlier compared to the rest of the Dundee scan path models: it finds very large 
credible intervals for some estimates, and its predictive performance is very poor, both in-sample and out-of-sample (Table 4). This result suggests 
divergent training and motivates caution when using heavily parameterized CDR models, at least under BBVI estimation, where initial random 
sampling of parameter estimates can yield poor-quality samples and large gradients. If this particular model were the basis of a scientific investigation, 
such evidence of training divergence would motivate the use of different hyperparameters (e.g. a lower learning rate). However, it is reassuring that 
this outcome is quite rare in practice, occurring in only one of the hundreds of models fitted for this study. 

Goodness of fit results are visualized as quantile-quantile plots in Figs. A8, A10, A12, and A14. As shown, both the normalizing (log) transform and 
the asymmetric sinh-arcsinh error distribution improve goodness of fit across model types, with the best fit consistently occurring in sinh-arcsinh 
models of log-transformed fixation durations. The true error distribution for raw fixation durations tends to have a heavier right tail than that of 
the fitted distribution, even under sinh-arcsinh. This suggests that sinh-arcsinh on its own may not be sufficiently expressive to account for very 
skewed data. However, sinh-arcsinh consistently eliminates the heavy left tail visible in the Gaussian models, and it tends to better account for the right 
tail, thus improving fit across the board compared to Gaussian models in matched experimental conditions. These results indicate that sinh-arcsinh 
error is beneficial across designs, even if it cannot completely eliminate poor fit on its own.  

Table A2 
Dundee (first pass). CDR vs. baselines, mean-squared error. CDR results shown using (E)xponential, (N)ormal, Shifted (G)amma, and non-parametric LCG response 
kernels, fitted using MLE, BBVI improper, and BBVI. Best-performing models within the sets of baseline and CDR models are shown in italics. Best-performing overall 
models are shown in bold. Daggers (†) indicate convergence failures.   

Dundee (ms) Dundee (log-ms) 

Model Train Expl Test Train Expl Test 

LME 13,152† 14,204† 14,026† 0.1516 0.1542 0.1531 
LME-S 13,112† 14,162† 14,024† 0.1507† 0.1532† 0.1526†

GAM 13,007 14,065 13,871 0.1510 0.1536 0.1525 
GAM-S 12,882 13,948 13,771 0.1491 0.1518 0.1508 

CDR-E-MLE 13,040 14,077 – 0.1500 0.1529 – 
CDR-E-BBVI.imp 13,040 14,079 – 0.1500 0.1530 – 
CDR-E-BBVI 13,071 14,103 – 0.1505 0.1529 – 
CDR-N-MLE 13,030 14,163 – 0.1498 0.1542 – 
CDR-N-BBVI.imp 13,037 14,068 – 0.1498 0.1543 – 
CDR-N-BBVI 13,063 14,077 – 0.1504 0.1526 – 
CDR-G-MLE 13,034 14,069 – 0.1499 0.1534 – 
CDR-G-BBVI.imp 13,037 14,072 – 0.1499 0.1534 – 
CDR-G-BBVI 13,073 14,106 13,960 0.1505 0.1539 0.1520 
CDR-LCG-MLE 12,769 14,189 – 0.1465 0.1551 – 
CDR-LCG-BBVI.imp 12,788 14,109 – 0.1466 0.1547 – 
CDR-LCG-BBVI 13,069 14,092 – 0.1501 0.1526 –   

Table A3 
Dundee (go-past). CDR vs. baselines, mean-squared error. CDR results shown using (E)xponential, (N)ormal, Shifted (G)amma, and non-parametric LCG response 
kernels, fitted using MLE, BBVI improper, and BBVI. Best-performing models within the sets of baseline and CDR models are shown in italics. Best-performing overall 
models are shown in bold. Daggers (†) indicate convergence failures.   

Dundee (ms) Dundee (log-ms) 

Model Train Expl Test Train Expl Test 

LME 44,184 39,523 42,948 0.2073† 0.2072† 0.2070†

LME-S 44,097† 39,476† 43,014† 0.2057† 0.2057† 0.2058†

GAM 43,976 39,289 42,704 0.2063 0.2061 0.2060 
GAM-S 43,476 39,483 42,180 0.2034 0.2036 0.2035 

CDR-E-MLE 43,094 41,322 – 0.2049 0.2046 – 
CDR-E-BBVI.imp 43,094 41,338 – 0.2049 0.2046 – 
CDR-E-BBVI 43,178 41,926 – 0.2054 0.2051 – 
CDR-N-MLE 42,935 41,449 – 0.2045 0.2043 – 
CDR-N-BBVI.imp 42,944 41,351 – 0.2048 0.2042 – 
CDR-N-BBVI 42,975 40,776 – 0.2053 0.2047 – 
CDR-G-MLE 42,864 39,844 – 0.2039 0.2036 – 
CDR-G-BBVI.imp 42,864 39,876 – 0.2041 0.2037 – 
CDR-G-BBVI 43,222 40,970 40,018 0.2054 0.2051 0.2052 
CDR-LCG-MLE 42,329 41,798 – 0.1998 0.2061 – 
CDR-LCG-BBVI.imp 42,336 41,678 – 0.2002 0.2052 – 
CDR-LCG-BBVI 42,995 39,540 – 0.2047 0.2044 –   
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Table A4 
Reading data model comparison (Dundee first pass). Permutation tests of improvement on test set 
from CDR-G-BBVI over baselines (pooled across all tasks), along with binomial tests of the probability of 
CDR models improving over each baseline, aggregating over training and exploratory sets (those on 
which all CDR models are evaluated).   

Permutation test Binomial test 

Baseline p Success rate p 

LME 1.0e-4*** 0.96 2.2e-16*** 
LME-S 1.0e-4*** 0.91 2.2e-16*** 
GAM 1.0e-4*** 0.72 1.1e-5*** 
GAM-S 1.0e-4*** 0.59 0.02*   

Table A5 
Reading data model comparison (Dundee go-past). Permutation tests of improvement on test set from 
CDR-G-BBVI over baselines (pooled across all tasks), along with binomial tests of the probability of CDR 
models improving over each baseline, aggregating over training and exploratory sets (those on which all 
CDR models are evaluated).   

Permutation test Binomial test 

Baseline p Success rate p 

LME 1.0e-4*** 0.88 9.2e-16*** 
LME-S 1.0e-4*** 0.86 6.0e-14*** 
GAM 1.0e-4*** 0.86 6.0e-14*** 
GAM-S 1.0e-4*** 0.65 0.003**   

Table A6 
Reading data model comparison (Dundee, all duration types). Permutation tests of improvement on 
test set from CDR-G-BBVI over baselines (pooled across all tasks), along with binomial tests of the 
probability of CDR models improving over each baseline, aggregating over training and exploratory sets 
(those on which all CDR models are evaluated). Note: Dundee scan path durations are excluded from the 
LME-S comparison because runtime limits prevented training from terminating.   

Permutation test Binomial test 

Baseline p Success rate p 

LME 1.0e-4*** 0.90 2.2e-16*** 
LME-S 1.0e-4*** 0.87 2.2e-16*** 
GAM 1.0e-4*** 0.67 2.2e-6*** 
GAM-S 1.0e-4*** 0.36 0.36  

Performance comparisons for first pass and go-past models of Dundee are given in Tables A2 and A3 (see §7 for results in Natural Stories and 
Dundee scan path durations). CDR mostly outperforms the LME baselines in exploratory set error on first pass durations and on log-transformed go- 
past durations. Exploratory set performance on linear go-past durations is generally below that of the baselines, although test set performance is 
substantially better than that of all baselines. GAM generally achieves similar generalization performance to CDR, while GAM-S generally improves 
upon CDR’s generalization performance. 

The outcome of our primary model comparison (permutation testing of test-set error from CDR-G-BBVI vs. baselines) is unchanged from Table 5: 
CDR significantly outperforms all baselines on aggregated Natural Stories and Dundee reading data, whether considering first pass durations 
(Table A4), go-past durations (Table A5), scan path durations (Table 5), or all three duration types combined (Table A6). Thus, results still support the 
claim of overall generalization improvement from using CDR over baselines. 
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The binomial test for training and exploratory set improvement from arbitrarily chosen CDR models reveals a significant rate of improvement from 
CDR over LME, LME-S, and GAM, no matter which duration type(s) are used for Dundee (Tables A4, A5, 5, A6). In addition, CDR outperforms GAM-S 
at a significant rate when scan paths are not considered (Tables A4 and A5). However, CDR fails to outperform GAM-S at a significant rate when scan 
paths are considered (Tables 5 and A6). The strong performance of GAM-S vs. CDR in Dundee is possibly due to partially non-overlapping strengths 
and weaknesses of the two models (see §7.3 for discussion). While an arbitrarily chosen hyperparameterization for CDR for Dundee scan paths does not 
provide an expected performance improvement over GAM-S, CDR performance is still strong in this domain (e.g. relative to the other baselines), 
justifying its application when temporal diffusion plausibly affects the measured response. 

C.3. fMRI 

Full results for the Natural Stories fMRI dataset (§8) are shown in Fig. A15. Results are highly consistent across kernels, error distributions, and 
estimation methods. As in the reading data, sinh-arcsinh substantially improves goodness of fit of modeled error distribution (Fig. A16).    

Fig. A15. Natural Stories fMRI: HRF estimates using Gaussian vs. sinh-arcsinh error distributions and various hemodynamic response kernels.   
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Fig. A16. Natural Stories fMRI: Quantile-quantile plots of fitted (x-axis) to true (y-axis) error distributions on the training set, using Gaussian vs. sinh-arcsinh error 
distributions and various hemodynamic response kernels. The theoretical best-fit line is plotted in red. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.)  
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Table A7 
Ablative testing results against null hypothesis of no effect for 5-gram surprisal, using three different CDR-appropriate testing procedures. Mean and 95% credible 
intervals for the CDR effect estimate g′ for 5-gram surprisal are shown in the g′ columns. Rejections of the null are shown in bold. Daggers (y) indicate convergence 
failures in one or both models. Plusses (+) indicate conceptual reproductions of tests in Shain (2019).     

g′ p-value 

Dataset Response Error Mean 2.5% 97.5% Direct PT 2-Step LRT 2-Step PT 

Natural Stories ms Gaussian 0.729 0.706 0.753 1.0 2.2e-16***y 1.0y

Natural Stories ms sinh-arcsinh 2.47 2.42 2.53 1.0 2.2e-16***y 0.44y

+Natural Stories log-ms Gaussian 0.011 0.011 0.011 3.0e-4*** 2.2e-16*** 1.0 
Natural Stories log-ms sinh-arcsinh 0.009 0.009 0.009 1/0e-4*** 2.2e-16*** 1.0 
Dundee (FP) ms Gaussian 3.52 3.32 3.71 1.0e-4*** 2.6e-14***y 0.074y

Dundee (FP) ms sinh-arcsinh 1.75 1.69 1.80 1.0e-4*** 3.1e-8***y 1.0y

Dundee (FP) log-ms Gaussian 0.012 0.011 0.013 2.0e-4*** 2.6e-14*** 0.016* 
Dundee (FP) log-ms sinh-arcsinh 0.011 0.010 0.011 1.0e-4*** 2.9e-12*** 0.50 
Dundee (GP) ms Gaussian 5.75 5.42 6.05 1.0e-4*** 4.0e-13***y 0.99y

Dundee (GP) ms sinh-arcsinh 1.93 1.88 1.98 1.0e-4*** 8.7e-8***y 0.39y

+Dundee (GP) log-ms Gaussian 0.018 0.017 0.019 2.0e-4*** 6.9e-15*** 0.52 
Dundee (GP) log-ms sinh-arcsinh 0.014 0.013 0.015 1.0e-4*** 9.7e-11*** 0.58 
Dundee (SP) ms Gaussian 3.88 3.78 3.98 1.0e-4*** 2.2e-16y 0.76y

Dundee (SP) ms sinh-arcsinh 0.703 0.592 0.816 1.0e-4*** 1.0y 0.42y

Dundee (SP) log-ms Gaussian 0.009 0.008 0.009 1.0e-4*** 1.7e-13*** 0.38 
Dundee (SP) log-ms sinh-arcsinh 0.006 0.006 0.007 1.0e-4*** 9.0e-12*** 0.41 
fMRI BOLD Gaussian 0.180 0.175 0.184 1.0e-4*** 1.0e-9*** 1.0e-4*** 
fMRI BOLD sinh-arcsinh 0.140 0.137 0.144 1.0e-4*** 2.0e-8*** 5.0e-4***  

C.4. Hypothesis testing 

Table A7 shows the full set of hypothesis testing results, including sinh-arcsinh error distributions and all duration definitions applied to the 
Dundee corpus. 

Appendix D. Random effects in CDR: A case study 

Random effects estimation is an essential feature of statistical modeling approaches in behavioral psycholinguistics and cognitive neuroscience, 
and it is therefore critical that CDR support it. Beyond this, the use of random effects in our models of reading and fMRI data is not central to any of our 
core claims, and detailed empirical evaluation of the contribution of random effects to all models considered here is beyond the scope of this study. 
Nonetheless, as a sanity check, in this section we provide a case study of random effects in one of our model configurations: the 5-parameter BBVI- 
estimated HRF model of fMRI data (HRF5), selected because it was the model used in our critical fMRI evaluation.

Fig. A17. Fixed HRF estimates across model configurations in decreasing order of random effects complexity. Estimates are highly stable across designs.   
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Fig. A18. HRF estimates by fROI in the full (fROI + subjects) model. Results show substantial variability between estimates for angular gyrus (AngG), anterior 
temporal lobe (ATL), inferior frontal gyrus (IFG), the orbital part of IFG (IFGorb), middle frontal gyrus (MFG), and posterior temporal lobe (PTL). 

As discussed in §8, the HRF5 model contains random IRFs by fROI and random intercepts by subject. We explore the influence of these random 
terms by sequentially ablating them, first removing the random effects by fROI, then removing the random effects by subject (leaving a fixed-effects- 
only model).49 As shown in Fig. A17, all models find similar estimates, indicating that our main results do not depend critically on our particular 
random effects design. Random HRF estimates from the full model (Fig. A18) show that this is not due to over-constraining priors collapsing the 
random effects: effect sizes — and, to a lesser extent, shapes — vary between regions. 

The influence of random effects design on model performance is given in Table A8, which shows the in-sample (Train) and out-of-sample (Expl) 
error from the CDR models in comparison to the canonical HRF baseline (the best performing baseline from §8.5) in which the random effects have 
been comparably manipulated. CDR achieves better in-sample and out-of-sample error over each baseline with matched random effects. Both models 
show evidence that random effects can drive overfitting in this domain: in both model types, training set error decreases with additional random 
effects terms, indicating better fit to the training data, but exploratory set does not show the same pattern. The best-generalizing design is the fixed- 
effects-only model for both CDR and LME, which in both cases has the highest in-sample error but lowest out-of-sample error, suggesting that the other 
models have overfit to the training data. Nevertheless, in both model types, adding random effects by fROI improves over a variant with by-subject 
random effects only. For both CDR and LME, paired permutation tests show a statistically significant degradation in out-of-sample performance from 
the fixed-effects model to the by-fROI model and a statistically significant out-of-sample performance improvement from the by-fROI model to the by- 
fROI, by-subjects model (p = 0.0001*** in all comparisons). In addition, performance changes as a function of random effects design to a similar 
degree in both CDR and Canonical HRF models (the latter of which are implemented via LME). Together, these results suggest a qualitatively similar 
influence of random effects design in both CDR and LME.  

Table A8 
Model performance (mean squared error) on fMRI data as a function of random effects design.  

Model By-fROI By-Subject Natural Stories (fMRI)    

Train Expl 

Canonical HRF   11.4269 11.7526 
Canonical HRF  + 11.3857 11.8451 
Canonical HRF + + 11.3548 11.8263 
CDR-HRF5-BBVI   11.3571 11.6546 
CDR-HRF5-BBVI  + 11.3185 11.7239 
CDR-HRF5-BBVI + + 11.2774 11.6928  

In summary, our analysis shows that (1) fixed effects estimates are highly stable across different random effects definitions, (2) effect sizes and 
shapes vary substantially between random effects levels (fROIs), (3) the influence of random effects on predictive performance in CDR is similar to 
their influence in a linear mixed-effects comparison case, and (4) random effects can harm generalization performance (i.e. overfit to the training 
data), both in CDR and linear mixed models. Systematic investigation of the influence of different model configurations and datasets on fixed vs. 
random effects estimates is left to future work. 

49 This is of course not exhaustive – we could have ablated by-subject effects and kept by-fROI effects, simplified by-fROI effects, etc. Our purpose here is to explore 
an illustrative subset of possible random effects configurations. 
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